Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development
The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2011-11, Vol.157 (3), p.1043-1055 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1055 |
---|---|
container_issue | 3 |
container_start_page | 1043 |
container_title | Plant physiology (Bethesda) |
container_volume | 157 |
creator | Steiner, Sebastian Schröter, Yvonne Pfalz, Jeannette Pfannschmidt, Thomas |
description | The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants. |
doi_str_mv | 10.1104/pp.111.184515 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_926893981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435571</jstor_id><sourcerecordid>41435571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EosvCkSPIFwSXFI8dJ_EFqV0WqFTBqsA5cpxJ6-LEwU4q-hP413i12wUucHqW55s3Y_kR8hTYMQDLX49jUjiGKpcg75EFSMEzLvPqPlkwls6sqtQReRTjNWMMBOQPyREHlSsOsCA_z1ocJttZoyfrB-o7uo5xe6Ud_Tw382CnSO1ApyukG6fjZNtsPRjfYksvPp7QjXe3PQYdka58Pzr8QS_wBrWL9HS2rrXDJT113nyLtPOBboIfMdw50bcJdX7s08DH5EGXuvDJXpfk67v1l9WH7PzT-7PVyXlmZKGmzDSiUNCh1gpYC03JCmmEyStmWoPYskqjkKXhhZbIS1EB8sag5ghF2RZcLMmbne84Nz2mnmEK2tVjsL0Ot7XXtv67Mtir-tLf1IJLDrJMBi_3BsF_nzFOdW-jQef0gH6OteJFpYSq4P8k40IwSF-2JK_-SYIoJONSQJXQbIea4GMM2B1WB1ZvI1GPY1Kod5FI_PM_33ug7zKQgBd7QEejXRf0YGz8zeVlLpXaDn62467j5MOhnkMupCxB_ALAjMrj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365025318</pqid></control><display><type>article</type><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</creator><creatorcontrib>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</creatorcontrib><description>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.184515</identifier><identifier>PMID: 21949211</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>albino ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - enzymology ; BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES ; Biochemistry ; Biological and medical sciences ; chemistry ; Chloroplasts ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - isolation & purification ; DNA-Directed RNA Polymerases - metabolism ; early development ; Electrophoresis, Gel, Two-Dimensional ; Enzymes ; enzymology ; Escherichia ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Knockout Techniques ; Genes ; genetics ; Homozygote ; isolation & purification ; knockout mutants ; mass spectrometry ; metabolism ; Models, Biological ; Molecular Sequence Data ; Mustard Plant ; Mustard Plant - enzymology ; Mustards ; Mutation ; Mutation - genetics ; Phenotype ; Phenotypes ; plant development ; Plant physiology and development ; Plants ; Plastids ; Plastids - enzymology ; protein subunits ; Protein Subunits - chemistry ; Protein Subunits - isolation & purification ; Protein Subunits - metabolism ; proteins ; RNA ; Spectrometry, Mass, Electrospray Ionization</subject><ispartof>Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1043-1055</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</citedby><cites>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435571$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435571$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24745998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steiner, Sebastian</creatorcontrib><creatorcontrib>Schröter, Yvonne</creatorcontrib><creatorcontrib>Pfalz, Jeannette</creatorcontrib><creatorcontrib>Pfannschmidt, Thomas</creatorcontrib><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</description><subject>albino</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>chemistry</subject><subject>Chloroplasts</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - isolation & purification</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>early development</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Enzymes</subject><subject>enzymology</subject><subject>Escherichia</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>genetics</subject><subject>Homozygote</subject><subject>isolation & purification</subject><subject>knockout mutants</subject><subject>mass spectrometry</subject><subject>metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mustard Plant</subject><subject>Mustard Plant - enzymology</subject><subject>Mustards</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>plant development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>protein subunits</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - isolation & purification</subject><subject>Protein Subunits - metabolism</subject><subject>proteins</subject><subject>RNA</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhS0EosvCkSPIFwSXFI8dJ_EFqV0WqFTBqsA5cpxJ6-LEwU4q-hP413i12wUucHqW55s3Y_kR8hTYMQDLX49jUjiGKpcg75EFSMEzLvPqPlkwls6sqtQReRTjNWMMBOQPyREHlSsOsCA_z1ocJttZoyfrB-o7uo5xe6Ud_Tw382CnSO1ApyukG6fjZNtsPRjfYksvPp7QjXe3PQYdka58Pzr8QS_wBrWL9HS2rrXDJT113nyLtPOBboIfMdw50bcJdX7s08DH5EGXuvDJXpfk67v1l9WH7PzT-7PVyXlmZKGmzDSiUNCh1gpYC03JCmmEyStmWoPYskqjkKXhhZbIS1EB8sag5ghF2RZcLMmbne84Nz2mnmEK2tVjsL0Ot7XXtv67Mtir-tLf1IJLDrJMBi_3BsF_nzFOdW-jQef0gH6OteJFpYSq4P8k40IwSF-2JK_-SYIoJONSQJXQbIea4GMM2B1WB1ZvI1GPY1Kod5FI_PM_33ug7zKQgBd7QEejXRf0YGz8zeVlLpXaDn62467j5MOhnkMupCxB_ALAjMrj</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Steiner, Sebastian</creator><creator>Schröter, Yvonne</creator><creator>Pfalz, Jeannette</creator><creator>Pfannschmidt, Thomas</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><author>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>albino</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>chemistry</topic><topic>Chloroplasts</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - isolation & purification</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>early development</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Enzymes</topic><topic>enzymology</topic><topic>Escherichia</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>genetics</topic><topic>Homozygote</topic><topic>isolation & purification</topic><topic>knockout mutants</topic><topic>mass spectrometry</topic><topic>metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mustard Plant</topic><topic>Mustard Plant - enzymology</topic><topic>Mustards</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>plant development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>protein subunits</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - isolation & purification</topic><topic>Protein Subunits - metabolism</topic><topic>proteins</topic><topic>RNA</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Sebastian</creatorcontrib><creatorcontrib>Schröter, Yvonne</creatorcontrib><creatorcontrib>Pfalz, Jeannette</creatorcontrib><creatorcontrib>Pfannschmidt, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiner, Sebastian</au><au>Schröter, Yvonne</au><au>Pfalz, Jeannette</au><au>Pfannschmidt, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>157</volume><issue>3</issue><spage>1043</spage><epage>1055</epage><pages>1043-1055</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21949211</pmid><doi>10.1104/pp.111.184515</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1043-1055 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_926893981 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | albino Amino Acid Sequence Arabidopsis Arabidopsis - enzymology BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES Biochemistry Biological and medical sciences chemistry Chloroplasts DNA-directed RNA polymerase DNA-Directed RNA Polymerases DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - isolation & purification DNA-Directed RNA Polymerases - metabolism early development Electrophoresis, Gel, Two-Dimensional Enzymes enzymology Escherichia Fundamental and applied biological sciences. Psychology gene expression regulation Gene Knockout Techniques Genes genetics Homozygote isolation & purification knockout mutants mass spectrometry metabolism Models, Biological Molecular Sequence Data Mustard Plant Mustard Plant - enzymology Mustards Mutation Mutation - genetics Phenotype Phenotypes plant development Plant physiology and development Plants Plastids Plastids - enzymology protein subunits Protein Subunits - chemistry Protein Subunits - isolation & purification Protein Subunits - metabolism proteins RNA Spectrometry, Mass, Electrospray Ionization |
title | Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Essential%20Subunits%20in%20the%20Plastid-Encoded%20RNA%20Polymerase%20Complex%20Reveals%20Building%20Blocks%20for%20Proper%20Plastid%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Steiner,%20Sebastian&rft.date=2011-11-01&rft.volume=157&rft.issue=3&rft.spage=1043&rft.epage=1055&rft.pages=1043-1055&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.184515&rft_dat=%3Cjstor_pubme%3E41435571%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365025318&rft_id=info:pmid/21949211&rft_jstor_id=41435571&rfr_iscdi=true |