Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development

The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2011-11, Vol.157 (3), p.1043-1055
Hauptverfasser: Steiner, Sebastian, Schröter, Yvonne, Pfalz, Jeannette, Pfannschmidt, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 3
container_start_page 1043
container_title Plant physiology (Bethesda)
container_volume 157
creator Steiner, Sebastian
Schröter, Yvonne
Pfalz, Jeannette
Pfannschmidt, Thomas
description The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.
doi_str_mv 10.1104/pp.111.184515
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_926893981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435571</jstor_id><sourcerecordid>41435571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EosvCkSPIFwSXFI8dJ_EFqV0WqFTBqsA5cpxJ6-LEwU4q-hP413i12wUucHqW55s3Y_kR8hTYMQDLX49jUjiGKpcg75EFSMEzLvPqPlkwls6sqtQReRTjNWMMBOQPyREHlSsOsCA_z1ocJttZoyfrB-o7uo5xe6Ud_Tw382CnSO1ApyukG6fjZNtsPRjfYksvPp7QjXe3PQYdka58Pzr8QS_wBrWL9HS2rrXDJT113nyLtPOBboIfMdw50bcJdX7s08DH5EGXuvDJXpfk67v1l9WH7PzT-7PVyXlmZKGmzDSiUNCh1gpYC03JCmmEyStmWoPYskqjkKXhhZbIS1EB8sag5ghF2RZcLMmbne84Nz2mnmEK2tVjsL0Ot7XXtv67Mtir-tLf1IJLDrJMBi_3BsF_nzFOdW-jQef0gH6OteJFpYSq4P8k40IwSF-2JK_-SYIoJONSQJXQbIea4GMM2B1WB1ZvI1GPY1Kod5FI_PM_33ug7zKQgBd7QEejXRf0YGz8zeVlLpXaDn62467j5MOhnkMupCxB_ALAjMrj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365025318</pqid></control><display><type>article</type><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</creator><creatorcontrib>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</creatorcontrib><description>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.184515</identifier><identifier>PMID: 21949211</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>albino ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - enzymology ; BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES ; Biochemistry ; Biological and medical sciences ; chemistry ; Chloroplasts ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - isolation &amp; purification ; DNA-Directed RNA Polymerases - metabolism ; early development ; Electrophoresis, Gel, Two-Dimensional ; Enzymes ; enzymology ; Escherichia ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Knockout Techniques ; Genes ; genetics ; Homozygote ; isolation &amp; purification ; knockout mutants ; mass spectrometry ; metabolism ; Models, Biological ; Molecular Sequence Data ; Mustard Plant ; Mustard Plant - enzymology ; Mustards ; Mutation ; Mutation - genetics ; Phenotype ; Phenotypes ; plant development ; Plant physiology and development ; Plants ; Plastids ; Plastids - enzymology ; protein subunits ; Protein Subunits - chemistry ; Protein Subunits - isolation &amp; purification ; Protein Subunits - metabolism ; proteins ; RNA ; Spectrometry, Mass, Electrospray Ionization</subject><ispartof>Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1043-1055</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</citedby><cites>FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435571$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435571$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24745998$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steiner, Sebastian</creatorcontrib><creatorcontrib>Schröter, Yvonne</creatorcontrib><creatorcontrib>Pfalz, Jeannette</creatorcontrib><creatorcontrib>Pfannschmidt, Thomas</creatorcontrib><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</description><subject>albino</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>chemistry</subject><subject>Chloroplasts</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - isolation &amp; purification</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>early development</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Enzymes</subject><subject>enzymology</subject><subject>Escherichia</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>genetics</subject><subject>Homozygote</subject><subject>isolation &amp; purification</subject><subject>knockout mutants</subject><subject>mass spectrometry</subject><subject>metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mustard Plant</subject><subject>Mustard Plant - enzymology</subject><subject>Mustards</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>plant development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>protein subunits</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - isolation &amp; purification</subject><subject>Protein Subunits - metabolism</subject><subject>proteins</subject><subject>RNA</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhS0EosvCkSPIFwSXFI8dJ_EFqV0WqFTBqsA5cpxJ6-LEwU4q-hP413i12wUucHqW55s3Y_kR8hTYMQDLX49jUjiGKpcg75EFSMEzLvPqPlkwls6sqtQReRTjNWMMBOQPyREHlSsOsCA_z1ocJttZoyfrB-o7uo5xe6Ud_Tw382CnSO1ApyukG6fjZNtsPRjfYksvPp7QjXe3PQYdka58Pzr8QS_wBrWL9HS2rrXDJT113nyLtPOBboIfMdw50bcJdX7s08DH5EGXuvDJXpfk67v1l9WH7PzT-7PVyXlmZKGmzDSiUNCh1gpYC03JCmmEyStmWoPYskqjkKXhhZbIS1EB8sag5ghF2RZcLMmbne84Nz2mnmEK2tVjsL0Ot7XXtv67Mtir-tLf1IJLDrJMBi_3BsF_nzFOdW-jQef0gH6OteJFpYSq4P8k40IwSF-2JK_-SYIoJONSQJXQbIea4GMM2B1WB1ZvI1GPY1Kod5FI_PM_33ug7zKQgBd7QEejXRf0YGz8zeVlLpXaDn62467j5MOhnkMupCxB_ALAjMrj</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Steiner, Sebastian</creator><creator>Schröter, Yvonne</creator><creator>Pfalz, Jeannette</creator><creator>Pfannschmidt, Thomas</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</title><author>Steiner, Sebastian ; Schröter, Yvonne ; Pfalz, Jeannette ; Pfannschmidt, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-cb3691feaa910d1b7065c3c480cdceed08ae357c26a5e27381e2bcea2e167d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>albino</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>chemistry</topic><topic>Chloroplasts</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - isolation &amp; purification</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>early development</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Enzymes</topic><topic>enzymology</topic><topic>Escherichia</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>genetics</topic><topic>Homozygote</topic><topic>isolation &amp; purification</topic><topic>knockout mutants</topic><topic>mass spectrometry</topic><topic>metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mustard Plant</topic><topic>Mustard Plant - enzymology</topic><topic>Mustards</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>plant development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>protein subunits</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - isolation &amp; purification</topic><topic>Protein Subunits - metabolism</topic><topic>proteins</topic><topic>RNA</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Sebastian</creatorcontrib><creatorcontrib>Schröter, Yvonne</creatorcontrib><creatorcontrib>Pfalz, Jeannette</creatorcontrib><creatorcontrib>Pfannschmidt, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiner, Sebastian</au><au>Schröter, Yvonne</au><au>Pfalz, Jeannette</au><au>Pfannschmidt, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>157</volume><issue>3</issue><spage>1043</spage><epage>1055</epage><pages>1043-1055</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21949211</pmid><doi>10.1104/pp.111.184515</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1043-1055
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_926893981
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects albino
Amino Acid Sequence
Arabidopsis
Arabidopsis - enzymology
BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
Biochemistry
Biological and medical sciences
chemistry
Chloroplasts
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - isolation & purification
DNA-Directed RNA Polymerases - metabolism
early development
Electrophoresis, Gel, Two-Dimensional
Enzymes
enzymology
Escherichia
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Knockout Techniques
Genes
genetics
Homozygote
isolation & purification
knockout mutants
mass spectrometry
metabolism
Models, Biological
Molecular Sequence Data
Mustard Plant
Mustard Plant - enzymology
Mustards
Mutation
Mutation - genetics
Phenotype
Phenotypes
plant development
Plant physiology and development
Plants
Plastids
Plastids - enzymology
protein subunits
Protein Subunits - chemistry
Protein Subunits - isolation & purification
Protein Subunits - metabolism
proteins
RNA
Spectrometry, Mass, Electrospray Ionization
title Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Essential%20Subunits%20in%20the%20Plastid-Encoded%20RNA%20Polymerase%20Complex%20Reveals%20Building%20Blocks%20for%20Proper%20Plastid%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Steiner,%20Sebastian&rft.date=2011-11-01&rft.volume=157&rft.issue=3&rft.spage=1043&rft.epage=1055&rft.pages=1043-1055&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.184515&rft_dat=%3Cjstor_pubme%3E41435571%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365025318&rft_id=info:pmid/21949211&rft_jstor_id=41435571&rfr_iscdi=true