Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients

The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2011-12, Vol.39 (12), p.2935-2944
Hauptverfasser: Gómez, Carlos, Olde Dubbelink, Kim T. E., Stam, Cornelis J., Abásolo, Daniel, Berendse, Henk W., Hornero, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2944
container_issue 12
container_start_page 2935
container_title Annals of biomedical engineering
container_volume 39
creator Gómez, Carlos
Olde Dubbelink, Kim T. E.
Stam, Cornelis J.
Abásolo, Daniel
Berendse, Henk W.
Hornero, Roberto
description The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity ( LZC ), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences ( p -values
doi_str_mv 10.1007/s10439-011-0416-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926892251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501237881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi1ERUPbB2CDRmzoZso5tsdjL6OQXqQiUC9ry3E9kctkJvhMENn1NXg9ngSP0oKEBKws-Xz-_Ns_Y68QThCgfkcIUpgSEEuQqEp4xiZY1aI0SqvnbAJgoFRGyX32kugeMqhF9YLtczTKIOgJs7N-tW7Dtzhsi2nn2i1FKvqmuAo0xG5ZXg9uCMWH-Vkx9UP8OmKxK-YutdtxtgzFJ5c-x4767sfDdyreRwqOxt0hhm6gQ7bXuJbC0eN6wG5P5zez8_Ly49nFbHpZelnrIYes0RuuQFXc3cmaCwyNRN3IhdeNX4jKo9Za1FVOvkBw3LuQnwyukc7xIA7Y2513nfovmxzeriL50LauC_2GbHZrw3mF_yeBC1FLlJk8_ieJqkZhJFaQ0Td_oPf9JuX_HH2YbcaoDOEO8qknSqGx6xRXLm0tgh0LtbtCbe7JjoXaUfz6UbxZrMLdrxNPDWaA7wDKo24Z0u-b_279CZHpqd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901741996</pqid></control><display><type>article</type><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</creator><creatorcontrib>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</creatorcontrib><description>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity ( LZC ), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences ( p -values &lt;0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of LZC results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed. LZC results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of LZC to detect an abnormal type of dynamics associated with PD.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-011-0416-0</identifier><identifier>PMID: 21969108</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Aged ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain ; Cerebral Cortex - physiopathology ; Classical Mechanics ; Classification ; Complexity ; Conversion ; Discriminant Analysis ; Female ; Humans ; Magnetoencephalography - methods ; Male ; Middle Aged ; Parkinson Disease - classification ; Parkinson Disease - physiopathology ; Parkinson's disease ; Patients ; ROC Curve ; Sensitivity and Specificity ; Temporal logic</subject><ispartof>Annals of biomedical engineering, 2011-12, Vol.39 (12), p.2935-2944</ispartof><rights>Biomedical Engineering Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</citedby><cites>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-011-0416-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-011-0416-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Olde Dubbelink, Kim T. E.</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Abásolo, Daniel</creatorcontrib><creatorcontrib>Berendse, Henk W.</creatorcontrib><creatorcontrib>Hornero, Roberto</creatorcontrib><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity ( LZC ), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences ( p -values &lt;0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of LZC results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed. LZC results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of LZC to detect an abnormal type of dynamics associated with PD.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Complexity</subject><subject>Conversion</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Parkinson Disease - classification</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Temporal logic</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctuEzEUhi1ERUPbB2CDRmzoZso5tsdjL6OQXqQiUC9ry3E9kctkJvhMENn1NXg9ngSP0oKEBKws-Xz-_Ns_Y68QThCgfkcIUpgSEEuQqEp4xiZY1aI0SqvnbAJgoFRGyX32kugeMqhF9YLtczTKIOgJs7N-tW7Dtzhsi2nn2i1FKvqmuAo0xG5ZXg9uCMWH-Vkx9UP8OmKxK-YutdtxtgzFJ5c-x4767sfDdyreRwqOxt0hhm6gQ7bXuJbC0eN6wG5P5zez8_Ly49nFbHpZelnrIYes0RuuQFXc3cmaCwyNRN3IhdeNX4jKo9Za1FVOvkBw3LuQnwyukc7xIA7Y2513nfovmxzeriL50LauC_2GbHZrw3mF_yeBC1FLlJk8_ieJqkZhJFaQ0Td_oPf9JuX_HH2YbcaoDOEO8qknSqGx6xRXLm0tgh0LtbtCbe7JjoXaUfz6UbxZrMLdrxNPDWaA7wDKo24Z0u-b_279CZHpqd4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Gómez, Carlos</creator><creator>Olde Dubbelink, Kim T. E.</creator><creator>Stam, Cornelis J.</creator><creator>Abásolo, Daniel</creator><creator>Berendse, Henk W.</creator><creator>Hornero, Roberto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20111201</creationdate><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><author>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Complexity</topic><topic>Conversion</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Parkinson Disease - classification</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Olde Dubbelink, Kim T. E.</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Abásolo, Daniel</creatorcontrib><creatorcontrib>Berendse, Henk W.</creatorcontrib><creatorcontrib>Hornero, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Carlos</au><au>Olde Dubbelink, Kim T. E.</au><au>Stam, Cornelis J.</au><au>Abásolo, Daniel</au><au>Berendse, Henk W.</au><au>Hornero, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>39</volume><issue>12</issue><spage>2935</spage><epage>2944</epage><pages>2935-2944</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity ( LZC ), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences ( p -values &lt;0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of LZC results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed. LZC results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of LZC to detect an abnormal type of dynamics associated with PD.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21969108</pmid><doi>10.1007/s10439-011-0416-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2011-12, Vol.39 (12), p.2935-2944
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_926892251
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Accuracy
Aged
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain
Cerebral Cortex - physiopathology
Classical Mechanics
Classification
Complexity
Conversion
Discriminant Analysis
Female
Humans
Magnetoencephalography - methods
Male
Middle Aged
Parkinson Disease - classification
Parkinson Disease - physiopathology
Parkinson's disease
Patients
ROC Curve
Sensitivity and Specificity
Temporal logic
title Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20Analysis%20of%20Resting-State%20MEG%20Activity%20in%20Early-Stage%20Parkinson%E2%80%99s%20Disease%20Patients&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=G%C3%B3mez,%20Carlos&rft.date=2011-12-01&rft.volume=39&rft.issue=12&rft.spage=2935&rft.epage=2944&rft.pages=2935-2944&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-011-0416-0&rft_dat=%3Cproquest_cross%3E2501237881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901741996&rft_id=info:pmid/21969108&rfr_iscdi=true