Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients
The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreate...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2011-12, Vol.39 (12), p.2935-2944 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2944 |
---|---|
container_issue | 12 |
container_start_page | 2935 |
container_title | Annals of biomedical engineering |
container_volume | 39 |
creator | Gómez, Carlos Olde Dubbelink, Kim T. E. Stam, Cornelis J. Abásolo, Daniel Berendse, Henk W. Hornero, Roberto |
description | The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity (
LZC
), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences (
p
-values |
doi_str_mv | 10.1007/s10439-011-0416-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926892251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501237881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi1ERUPbB2CDRmzoZso5tsdjL6OQXqQiUC9ry3E9kctkJvhMENn1NXg9ngSP0oKEBKws-Xz-_Ns_Y68QThCgfkcIUpgSEEuQqEp4xiZY1aI0SqvnbAJgoFRGyX32kugeMqhF9YLtczTKIOgJs7N-tW7Dtzhsi2nn2i1FKvqmuAo0xG5ZXg9uCMWH-Vkx9UP8OmKxK-YutdtxtgzFJ5c-x4767sfDdyreRwqOxt0hhm6gQ7bXuJbC0eN6wG5P5zez8_Ly49nFbHpZelnrIYes0RuuQFXc3cmaCwyNRN3IhdeNX4jKo9Za1FVOvkBw3LuQnwyukc7xIA7Y2513nfovmxzeriL50LauC_2GbHZrw3mF_yeBC1FLlJk8_ieJqkZhJFaQ0Td_oPf9JuX_HH2YbcaoDOEO8qknSqGx6xRXLm0tgh0LtbtCbe7JjoXaUfz6UbxZrMLdrxNPDWaA7wDKo24Z0u-b_279CZHpqd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901741996</pqid></control><display><type>article</type><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</creator><creatorcontrib>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</creatorcontrib><description>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity (
LZC
), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences (
p
-values <0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of
LZC
results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed.
LZC
results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of
LZC
to detect an abnormal type of dynamics associated with PD.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-011-0416-0</identifier><identifier>PMID: 21969108</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Aged ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain ; Cerebral Cortex - physiopathology ; Classical Mechanics ; Classification ; Complexity ; Conversion ; Discriminant Analysis ; Female ; Humans ; Magnetoencephalography - methods ; Male ; Middle Aged ; Parkinson Disease - classification ; Parkinson Disease - physiopathology ; Parkinson's disease ; Patients ; ROC Curve ; Sensitivity and Specificity ; Temporal logic</subject><ispartof>Annals of biomedical engineering, 2011-12, Vol.39 (12), p.2935-2944</ispartof><rights>Biomedical Engineering Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</citedby><cites>FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-011-0416-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-011-0416-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Olde Dubbelink, Kim T. E.</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Abásolo, Daniel</creatorcontrib><creatorcontrib>Berendse, Henk W.</creatorcontrib><creatorcontrib>Hornero, Roberto</creatorcontrib><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity (
LZC
), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences (
p
-values <0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of
LZC
results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed.
LZC
results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of
LZC
to detect an abnormal type of dynamics associated with PD.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Classical Mechanics</subject><subject>Classification</subject><subject>Complexity</subject><subject>Conversion</subject><subject>Discriminant Analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Parkinson Disease - classification</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Temporal logic</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctuEzEUhi1ERUPbB2CDRmzoZso5tsdjL6OQXqQiUC9ry3E9kctkJvhMENn1NXg9ngSP0oKEBKws-Xz-_Ns_Y68QThCgfkcIUpgSEEuQqEp4xiZY1aI0SqvnbAJgoFRGyX32kugeMqhF9YLtczTKIOgJs7N-tW7Dtzhsi2nn2i1FKvqmuAo0xG5ZXg9uCMWH-Vkx9UP8OmKxK-YutdtxtgzFJ5c-x4767sfDdyreRwqOxt0hhm6gQ7bXuJbC0eN6wG5P5zez8_Ly49nFbHpZelnrIYes0RuuQFXc3cmaCwyNRN3IhdeNX4jKo9Za1FVOvkBw3LuQnwyukc7xIA7Y2513nfovmxzeriL50LauC_2GbHZrw3mF_yeBC1FLlJk8_ieJqkZhJFaQ0Td_oPf9JuX_HH2YbcaoDOEO8qknSqGx6xRXLm0tgh0LtbtCbe7JjoXaUfz6UbxZrMLdrxNPDWaA7wDKo24Z0u-b_279CZHpqd4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Gómez, Carlos</creator><creator>Olde Dubbelink, Kim T. E.</creator><creator>Stam, Cornelis J.</creator><creator>Abásolo, Daniel</creator><creator>Berendse, Henk W.</creator><creator>Hornero, Roberto</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20111201</creationdate><title>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</title><author>Gómez, Carlos ; Olde Dubbelink, Kim T. E. ; Stam, Cornelis J. ; Abásolo, Daniel ; Berendse, Henk W. ; Hornero, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-6971c9260652ad47231ef418f4bc8fcb35c1888375196b10a2cae4160af4aa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Classical Mechanics</topic><topic>Classification</topic><topic>Complexity</topic><topic>Conversion</topic><topic>Discriminant Analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Parkinson Disease - classification</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Olde Dubbelink, Kim T. E.</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Abásolo, Daniel</creatorcontrib><creatorcontrib>Berendse, Henk W.</creatorcontrib><creatorcontrib>Hornero, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Carlos</au><au>Olde Dubbelink, Kim T. E.</au><au>Stam, Cornelis J.</au><au>Abásolo, Daniel</au><au>Berendse, Henk W.</au><au>Hornero, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>39</volume><issue>12</issue><spage>2935</spage><epage>2944</epage><pages>2935-2944</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The aim of the present study was to analyze resting-state brain activity in patients with Parkinson’s disease (PD), a degenerative disorder of the nervous system. Magnetoencephalography (MEG) signals were recorded with a 151-channel whole-head radial gradiometer MEG system in 18 early-stage untreated PD patients and 20 age-matched control subjects. Artifact-free epochs of 4 s (1250 samples) were analyzed with Lempel–Ziv complexity (
LZC
), applying two- and three-symbol sequence conversion methods. The results showed that MEG signals from PD patients are less complex than control subjects’ recordings. We found significant group differences (
p
-values <0.01) for the 10 major cortical areas analyzed (e.g., bilateral frontal, central, temporal, parietal, and occipital regions). In addition, using receiver-operating characteristic curves with a leave-one-out cross-validation procedure, a classification accuracy of 81.58% was obtained. In order to investigate the best combination of
LZC
results for classification purposes, a forward stepwise linear discriminant analysis with leave-one out cross-validation was employed.
LZC
results (three-symbol sequence conversion) from right parietal and temporal brain regions were automatically selected by the model. With this procedure, an accuracy of 84.21% (77.78% sensitivity, 90.0% specificity) was achieved. Our findings demonstrate the usefulness of
LZC
to detect an abnormal type of dynamics associated with PD.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21969108</pmid><doi>10.1007/s10439-011-0416-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2011-12, Vol.39 (12), p.2935-2944 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_926892251 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Accuracy Aged Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain Cerebral Cortex - physiopathology Classical Mechanics Classification Complexity Conversion Discriminant Analysis Female Humans Magnetoencephalography - methods Male Middle Aged Parkinson Disease - classification Parkinson Disease - physiopathology Parkinson's disease Patients ROC Curve Sensitivity and Specificity Temporal logic |
title | Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20Analysis%20of%20Resting-State%20MEG%20Activity%20in%20Early-Stage%20Parkinson%E2%80%99s%20Disease%20Patients&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=G%C3%B3mez,%20Carlos&rft.date=2011-12-01&rft.volume=39&rft.issue=12&rft.spage=2935&rft.epage=2944&rft.pages=2935-2944&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-011-0416-0&rft_dat=%3Cproquest_cross%3E2501237881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901741996&rft_id=info:pmid/21969108&rfr_iscdi=true |