Selectivity and Permeation of Alkali Metal Ions in K +-channels

Ion conduction in K +-channels is usually described in terms of concerted movements of K + progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2011-06, Vol.409 (5), p.867-878
Hauptverfasser: Furini, Simone, Domene, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 5
container_start_page 867
container_title Journal of molecular biology
container_volume 409
creator Furini, Simone
Domene, Carmen
description Ion conduction in K +-channels is usually described in terms of concerted movements of K + progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K +-channels are known to be highly selective for K + over Na +, some K + channels conduct Na + in the absence of K +. Other ions are known to permeate K +-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K +-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb + translocation show at atomic level why experimental Rb + conductance is slightly lower than that of K +. In contrast to K + or Rb +, external Na + block K + currents, and the sites where Na + transport is hindered are characterized. Translocation of K +/Na + mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na +, excluding Na + from a channel already loaded with K +. [Display omitted] ► This study extends our knowledge of how selectivity is realized in K +-channels. ► Energetic analysis for mixtures of Na +/K + reveals the key for K + versus Na + selectivity. ► A discontinuity in the binding sites excludes Na + from a filter loaded with K +. ► Energy maps show why experimental Rb + conductance is lower than K + conductance
doi_str_mv 10.1016/j.jmb.2011.04.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926890565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283611004724</els_id><sourcerecordid>926890565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7b26ca78f5543e5c63a3494cb8da3b519da38589d983f3cc3eeff77bcf0f76a13</originalsourceid><addsrcrecordid>eNqFkUtLHUEQRhuJ6I36A7JJepdFmGv1c3rIIojkISoK6rrp6amOfZ2Hds8V_Pe2XOPSFAW1OfVRnCLkE4MlA6YPV8vV0C45MLYEWVpskQUD01RGC_OBLAA4r7gRepd8zHkFAEpIs0N2OVMSQOgF-XGFPfo5Psb5ibqxo5eYBnRznEY6BXrU37k-0nOcXU9PpjHTONJT-q3yt24csc_7ZDu4PuPB69wjN79-Xh__qc4ufp8cH51VXtZyruqWa-9qE5SSApXXwgnZSN-azolWsaYMo0zTNUYE4b1ADKGuWx8g1NoxsUe-bnLv0_SwxjzbIWaPfe9GnNbZNlybBpRW_yVNDbwRwHgh2Yb0aco5YbD3KQ4uPVkG9kWwXdki2L4ItiBLi7Lz-TV93Q7YvW38M1qALxsguMm6vylme3NVElSxL3WpQnzfEEUfPkZMNvuIo8cupvIK203xnQOeAWD2kqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870293012</pqid></control><display><type>article</type><title>Selectivity and Permeation of Alkali Metal Ions in K +-channels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Furini, Simone ; Domene, Carmen</creator><creatorcontrib>Furini, Simone ; Domene, Carmen</creatorcontrib><description>Ion conduction in K +-channels is usually described in terms of concerted movements of K + progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K +-channels are known to be highly selective for K + over Na +, some K + channels conduct Na + in the absence of K +. Other ions are known to permeate K +-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K +-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb + translocation show at atomic level why experimental Rb + conductance is slightly lower than that of K +. In contrast to K + or Rb +, external Na + block K + currents, and the sites where Na + transport is hindered are characterized. Translocation of K +/Na + mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na +, excluding Na + from a channel already loaded with K +. [Display omitted] ► This study extends our knowledge of how selectivity is realized in K +-channels. ► Energetic analysis for mixtures of Na +/K + reveals the key for K + versus Na + selectivity. ► A discontinuity in the binding sites excludes Na + from a filter loaded with K +. ► Energy maps show why experimental Rb + conductance is lower than K + conductance</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2011.04.043</identifier><identifier>PMID: 21540036</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Alkalies ; Binding Sites ; energy ; free energy ; ions ; metal ions ; Metals - chemistry ; Models, Molecular ; molecular dynamics ; potassium ; potassium channels ; Potassium Channels - chemistry ; potential of mean force ; rubidium ; Rubidium - chemistry ; sodium ; Static Electricity ; umbrella sampling</subject><ispartof>Journal of molecular biology, 2011-06, Vol.409 (5), p.867-878</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7b26ca78f5543e5c63a3494cb8da3b519da38589d983f3cc3eeff77bcf0f76a13</citedby><cites>FETCH-LOGICAL-c474t-7b26ca78f5543e5c63a3494cb8da3b519da38589d983f3cc3eeff77bcf0f76a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2011.04.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21540036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><title>Selectivity and Permeation of Alkali Metal Ions in K +-channels</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Ion conduction in K +-channels is usually described in terms of concerted movements of K + progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K +-channels are known to be highly selective for K + over Na +, some K + channels conduct Na + in the absence of K +. Other ions are known to permeate K +-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K +-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb + translocation show at atomic level why experimental Rb + conductance is slightly lower than that of K +. In contrast to K + or Rb +, external Na + block K + currents, and the sites where Na + transport is hindered are characterized. Translocation of K +/Na + mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na +, excluding Na + from a channel already loaded with K +. [Display omitted] ► This study extends our knowledge of how selectivity is realized in K +-channels. ► Energetic analysis for mixtures of Na +/K + reveals the key for K + versus Na + selectivity. ► A discontinuity in the binding sites excludes Na + from a filter loaded with K +. ► Energy maps show why experimental Rb + conductance is lower than K + conductance</description><subject>Alkalies</subject><subject>Binding Sites</subject><subject>energy</subject><subject>free energy</subject><subject>ions</subject><subject>metal ions</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>potassium</subject><subject>potassium channels</subject><subject>Potassium Channels - chemistry</subject><subject>potential of mean force</subject><subject>rubidium</subject><subject>Rubidium - chemistry</subject><subject>sodium</subject><subject>Static Electricity</subject><subject>umbrella sampling</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLHUEQRhuJ6I36A7JJepdFmGv1c3rIIojkISoK6rrp6amOfZ2Hds8V_Pe2XOPSFAW1OfVRnCLkE4MlA6YPV8vV0C45MLYEWVpskQUD01RGC_OBLAA4r7gRepd8zHkFAEpIs0N2OVMSQOgF-XGFPfo5Psb5ibqxo5eYBnRznEY6BXrU37k-0nOcXU9PpjHTONJT-q3yt24csc_7ZDu4PuPB69wjN79-Xh__qc4ufp8cH51VXtZyruqWa-9qE5SSApXXwgnZSN-azolWsaYMo0zTNUYE4b1ADKGuWx8g1NoxsUe-bnLv0_SwxjzbIWaPfe9GnNbZNlybBpRW_yVNDbwRwHgh2Yb0aco5YbD3KQ4uPVkG9kWwXdki2L4ItiBLi7Lz-TV93Q7YvW38M1qALxsguMm6vylme3NVElSxL3WpQnzfEEUfPkZMNvuIo8cupvIK203xnQOeAWD2kqo</recordid><startdate>20110624</startdate><enddate>20110624</enddate><creator>Furini, Simone</creator><creator>Domene, Carmen</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20110624</creationdate><title>Selectivity and Permeation of Alkali Metal Ions in K +-channels</title><author>Furini, Simone ; Domene, Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7b26ca78f5543e5c63a3494cb8da3b519da38589d983f3cc3eeff77bcf0f76a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkalies</topic><topic>Binding Sites</topic><topic>energy</topic><topic>free energy</topic><topic>ions</topic><topic>metal ions</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>potassium</topic><topic>potassium channels</topic><topic>Potassium Channels - chemistry</topic><topic>potential of mean force</topic><topic>rubidium</topic><topic>Rubidium - chemistry</topic><topic>sodium</topic><topic>Static Electricity</topic><topic>umbrella sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furini, Simone</creatorcontrib><creatorcontrib>Domene, Carmen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furini, Simone</au><au>Domene, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity and Permeation of Alkali Metal Ions in K +-channels</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2011-06-24</date><risdate>2011</risdate><volume>409</volume><issue>5</issue><spage>867</spage><epage>878</epage><pages>867-878</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Ion conduction in K +-channels is usually described in terms of concerted movements of K + progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K +-channels are known to be highly selective for K + over Na +, some K + channels conduct Na + in the absence of K +. Other ions are known to permeate K +-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K +-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb + translocation show at atomic level why experimental Rb + conductance is slightly lower than that of K +. In contrast to K + or Rb +, external Na + block K + currents, and the sites where Na + transport is hindered are characterized. Translocation of K +/Na + mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na +, excluding Na + from a channel already loaded with K +. [Display omitted] ► This study extends our knowledge of how selectivity is realized in K +-channels. ► Energetic analysis for mixtures of Na +/K + reveals the key for K + versus Na + selectivity. ► A discontinuity in the binding sites excludes Na + from a filter loaded with K +. ► Energy maps show why experimental Rb + conductance is lower than K + conductance</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21540036</pmid><doi>10.1016/j.jmb.2011.04.043</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2011-06, Vol.409 (5), p.867-878
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_926890565
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alkalies
Binding Sites
energy
free energy
ions
metal ions
Metals - chemistry
Models, Molecular
molecular dynamics
potassium
potassium channels
Potassium Channels - chemistry
potential of mean force
rubidium
Rubidium - chemistry
sodium
Static Electricity
umbrella sampling
title Selectivity and Permeation of Alkali Metal Ions in K +-channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20and%20Permeation%20of%20Alkali%20Metal%20Ions%20in%20K%20+-channels&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Furini,%20Simone&rft.date=2011-06-24&rft.volume=409&rft.issue=5&rft.spage=867&rft.epage=878&rft.pages=867-878&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2011.04.043&rft_dat=%3Cproquest_cross%3E926890565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870293012&rft_id=info:pmid/21540036&rft_els_id=S0022283611004724&rfr_iscdi=true