Dominance-based rough set model in intuitionistic fuzzy information systems

Intuitionistic fuzzy information systems are generalized types of conventional fuzzy-valued information systems. By introducing a dominance relation to intuitionistic fuzzy information systems, we propose a notion of dominance intuitionistic fuzzy information systems (DIFIS) and establish a dominanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2012-04, Vol.28, p.115-123
Hauptverfasser: Huang, Bing, Li, Hua-xiong, Wei, Da-kuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 115
container_title Knowledge-based systems
container_volume 28
creator Huang, Bing
Li, Hua-xiong
Wei, Da-kuan
description Intuitionistic fuzzy information systems are generalized types of conventional fuzzy-valued information systems. By introducing a dominance relation to intuitionistic fuzzy information systems, we propose a notion of dominance intuitionistic fuzzy information systems (DIFIS) and establish a dominance-based rough set model, which is mainly based on the substitution of the indiscernibility relation in classic rough set theory by a dominance relation that is defined on the score and accuracy function of intuitionistic fuzzy value in DIFIS. Furthermore, to simplify the knowledge representation and extract useful and simpler dominance intuitionistic fuzzy rules, we provide two attribute reduction approaches to eliminate the redundant information. Finally, we apply these approaches to computer auditing risk assessment, and by using an application as a case study we acquire some valuable assessment rules. These resulting rules can provide an available method to acquire knowledge from DIFISs.
doi_str_mv 10.1016/j.knosys.2011.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926887657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705111002747</els_id><sourcerecordid>926887657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f9b8f762fad89563dbea7f73d8c0b4670ea9c04602485987db1d22f6398dd7ca3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxfduWq9SR9JNoKMTxxwo-uQ5qEZ22ZMUmHm19uhroULFw7nnMv9ELrEUGDAzfWm-Bp83MWCAMYFJgUAO0ILzCjJaQX8GC2A15BTqPEpOotxAwCEYLZAL3e-d4MclMlbGY3Ogh8_PrNoUtZ7bbrMDdOk0SXnBxeTU5kd9_vdJFofenmQs-l0Mn08RydWdtFc_O0len-4f1s95evXx-fV7TpXZclSbnnLLG2IlZrxuil1ayS1tNRMQVs1FIzkCqoGSMVqzqhusSbENiVnWlMlyyW6mnu3wX-PJibRu6hM18nB-DEKThrGaFPTyVnNThV8jMFYsQ2ul2EnMIgDOrERMzpxQCcwERO6KXYzx8z0xY8zQUTlzMRIu2BUEtq7_wt-ASN3e18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926887657</pqid></control><display><type>article</type><title>Dominance-based rough set model in intuitionistic fuzzy information systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Bing ; Li, Hua-xiong ; Wei, Da-kuan</creator><creatorcontrib>Huang, Bing ; Li, Hua-xiong ; Wei, Da-kuan</creatorcontrib><description>Intuitionistic fuzzy information systems are generalized types of conventional fuzzy-valued information systems. By introducing a dominance relation to intuitionistic fuzzy information systems, we propose a notion of dominance intuitionistic fuzzy information systems (DIFIS) and establish a dominance-based rough set model, which is mainly based on the substitution of the indiscernibility relation in classic rough set theory by a dominance relation that is defined on the score and accuracy function of intuitionistic fuzzy value in DIFIS. Furthermore, to simplify the knowledge representation and extract useful and simpler dominance intuitionistic fuzzy rules, we provide two attribute reduction approaches to eliminate the redundant information. Finally, we apply these approaches to computer auditing risk assessment, and by using an application as a case study we acquire some valuable assessment rules. These resulting rules can provide an available method to acquire knowledge from DIFISs.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2011.12.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>DIFIS ; Discernibility matrix ; Dominance relation ; Reduction ; Rough set model</subject><ispartof>Knowledge-based systems, 2012-04, Vol.28, p.115-123</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f9b8f762fad89563dbea7f73d8c0b4670ea9c04602485987db1d22f6398dd7ca3</citedby><cites>FETCH-LOGICAL-c338t-f9b8f762fad89563dbea7f73d8c0b4670ea9c04602485987db1d22f6398dd7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2011.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huang, Bing</creatorcontrib><creatorcontrib>Li, Hua-xiong</creatorcontrib><creatorcontrib>Wei, Da-kuan</creatorcontrib><title>Dominance-based rough set model in intuitionistic fuzzy information systems</title><title>Knowledge-based systems</title><description>Intuitionistic fuzzy information systems are generalized types of conventional fuzzy-valued information systems. By introducing a dominance relation to intuitionistic fuzzy information systems, we propose a notion of dominance intuitionistic fuzzy information systems (DIFIS) and establish a dominance-based rough set model, which is mainly based on the substitution of the indiscernibility relation in classic rough set theory by a dominance relation that is defined on the score and accuracy function of intuitionistic fuzzy value in DIFIS. Furthermore, to simplify the knowledge representation and extract useful and simpler dominance intuitionistic fuzzy rules, we provide two attribute reduction approaches to eliminate the redundant information. Finally, we apply these approaches to computer auditing risk assessment, and by using an application as a case study we acquire some valuable assessment rules. These resulting rules can provide an available method to acquire knowledge from DIFISs.</description><subject>DIFIS</subject><subject>Discernibility matrix</subject><subject>Dominance relation</subject><subject>Reduction</subject><subject>Rough set model</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxfduWq9SR9JNoKMTxxwo-uQ5qEZ22ZMUmHm19uhroULFw7nnMv9ELrEUGDAzfWm-Bp83MWCAMYFJgUAO0ILzCjJaQX8GC2A15BTqPEpOotxAwCEYLZAL3e-d4MclMlbGY3Ogh8_PrNoUtZ7bbrMDdOk0SXnBxeTU5kd9_vdJFofenmQs-l0Mn08RydWdtFc_O0len-4f1s95evXx-fV7TpXZclSbnnLLG2IlZrxuil1ayS1tNRMQVs1FIzkCqoGSMVqzqhusSbENiVnWlMlyyW6mnu3wX-PJibRu6hM18nB-DEKThrGaFPTyVnNThV8jMFYsQ2ul2EnMIgDOrERMzpxQCcwERO6KXYzx8z0xY8zQUTlzMRIu2BUEtq7_wt-ASN3e18</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Huang, Bing</creator><creator>Li, Hua-xiong</creator><creator>Wei, Da-kuan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>201204</creationdate><title>Dominance-based rough set model in intuitionistic fuzzy information systems</title><author>Huang, Bing ; Li, Hua-xiong ; Wei, Da-kuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f9b8f762fad89563dbea7f73d8c0b4670ea9c04602485987db1d22f6398dd7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>DIFIS</topic><topic>Discernibility matrix</topic><topic>Dominance relation</topic><topic>Reduction</topic><topic>Rough set model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bing</creatorcontrib><creatorcontrib>Li, Hua-xiong</creatorcontrib><creatorcontrib>Wei, Da-kuan</creatorcontrib><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bing</au><au>Li, Hua-xiong</au><au>Wei, Da-kuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominance-based rough set model in intuitionistic fuzzy information systems</atitle><jtitle>Knowledge-based systems</jtitle><date>2012-04</date><risdate>2012</risdate><volume>28</volume><spage>115</spage><epage>123</epage><pages>115-123</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Intuitionistic fuzzy information systems are generalized types of conventional fuzzy-valued information systems. By introducing a dominance relation to intuitionistic fuzzy information systems, we propose a notion of dominance intuitionistic fuzzy information systems (DIFIS) and establish a dominance-based rough set model, which is mainly based on the substitution of the indiscernibility relation in classic rough set theory by a dominance relation that is defined on the score and accuracy function of intuitionistic fuzzy value in DIFIS. Furthermore, to simplify the knowledge representation and extract useful and simpler dominance intuitionistic fuzzy rules, we provide two attribute reduction approaches to eliminate the redundant information. Finally, we apply these approaches to computer auditing risk assessment, and by using an application as a case study we acquire some valuable assessment rules. These resulting rules can provide an available method to acquire knowledge from DIFISs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2011.12.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2012-04, Vol.28, p.115-123
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_926887657
source ScienceDirect Journals (5 years ago - present)
subjects DIFIS
Discernibility matrix
Dominance relation
Reduction
Rough set model
title Dominance-based rough set model in intuitionistic fuzzy information systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominance-based%20rough%20set%20model%20in%20intuitionistic%20fuzzy%20information%20systems&rft.jtitle=Knowledge-based%20systems&rft.au=Huang,%20Bing&rft.date=2012-04&rft.volume=28&rft.spage=115&rft.epage=123&rft.pages=115-123&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2011.12.008&rft_dat=%3Cproquest_cross%3E926887657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926887657&rft_id=info:pmid/&rft_els_id=S0950705111002747&rfr_iscdi=true