Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism

The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London) 2012-03, Vol.21 (2), p.576-590
Hauptverfasser: Casado-Martinez, M. C., Duncan, E., Smith, B. D., Maher, W. A., Rainbow, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 2
container_start_page 576
container_title Ecotoxicology (London)
container_volume 21
creator Casado-Martinez, M. C.
Duncan, E.
Smith, B. D.
Maher, W. A.
Rainbow, P. S.
description The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.
doi_str_mv 10.1007/s10646-011-0818-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_926887556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713748930</galeid><sourcerecordid>A713748930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bd87e76aa24014d41c349a78357079d2342fb2e832008b548c254b89b980268d3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTtv6A9xI4UY3Nd48qpK4awZfMOBGF65CKrnVZqhK2koa7X9vmmoVBCWBwM13Dic5hDylcE0B5KtMoRd9C5S2oKhq5T2yoZ3kLQcq75MN6J63mml2RR7lfAcAWgp4SK4YA8W5YBvyZbdkjME1Jf0ILpRTE2Jjm4w-zBhL67_jNIW4bw5pOrmvFgu-bjye6TE4W0KqePSNvdjMWOyQppDnx-TBaKeMTy7nlnx---bTzfv29uO7Dze729YJKUo7eCVR9tYyAVR4QR0X2krFOwlSe1ZTjgNDxRmAGjqhHOvEoPSgFbBeeb4lL1bfw5K-HTEXM4fsamobMR2z0ZVSsuv6Sr78L0l7SUX9l7q35Plf6F06LrG-o_qB1l0PrELXK7S3E5oQx1QW6-ryOAeXIo6hzneScimU5lAFdBW4JeW84GgOS5jtcjIUzLlRszZqaqPm3KiRVfPskuQ4zOh_K35VWAG2ArlexT0uf6L-2_UnPjephg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920995602</pqid></control><display><type>article</type><title>Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Casado-Martinez, M. C. ; Duncan, E. ; Smith, B. D. ; Maher, W. A. ; Rainbow, P. S.</creator><creatorcontrib>Casado-Martinez, M. C. ; Duncan, E. ; Smith, B. D. ; Maher, W. A. ; Rainbow, P. S.</creatorcontrib><description>The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-011-0818-7</identifier><identifier>PMID: 22083342</identifier><identifier>CODEN: ECOTEL</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Arsenic ; Arsenicals - adverse effects ; Arsenicals - analysis ; Arsenicals - pharmacokinetics ; Bioavailability ; Biological Availability ; Cell Fractionation ; Cellular ; Cytosol - drug effects ; Cytosol - metabolism ; Debris ; Deposition ; Detoxification ; Detritus ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Exposure ; Geologic Sediments - chemistry ; Granular materials ; Inactivation, Metabolic - physiology ; Marinas ; Metal concentrations ; Metallothioneins ; Physiological aspects ; Polychaeta - drug effects ; Polychaeta - physiology ; Proteins ; Sediments ; Sediments (Geology) ; Speciation ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - pharmacokinetics ; Water Pollutants, Chemical - toxicity</subject><ispartof>Ecotoxicology (London), 2012-03, Vol.21 (2), p.576-590</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bd87e76aa24014d41c349a78357079d2342fb2e832008b548c254b89b980268d3</citedby><cites>FETCH-LOGICAL-c474t-bd87e76aa24014d41c349a78357079d2342fb2e832008b548c254b89b980268d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-011-0818-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-011-0818-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casado-Martinez, M. C.</creatorcontrib><creatorcontrib>Duncan, E.</creatorcontrib><creatorcontrib>Smith, B. D.</creatorcontrib><creatorcontrib>Maher, W. A.</creatorcontrib><creatorcontrib>Rainbow, P. S.</creatorcontrib><title>Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><addtitle>Ecotoxicology</addtitle><description>The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.</description><subject>Animals</subject><subject>Arsenic</subject><subject>Arsenicals - adverse effects</subject><subject>Arsenicals - analysis</subject><subject>Arsenicals - pharmacokinetics</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Cell Fractionation</subject><subject>Cellular</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>Debris</subject><subject>Deposition</subject><subject>Detoxification</subject><subject>Detritus</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Exposure</subject><subject>Geologic Sediments - chemistry</subject><subject>Granular materials</subject><subject>Inactivation, Metabolic - physiology</subject><subject>Marinas</subject><subject>Metal concentrations</subject><subject>Metallothioneins</subject><subject>Physiological aspects</subject><subject>Polychaeta - drug effects</subject><subject>Polychaeta - physiology</subject><subject>Proteins</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Speciation</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - pharmacokinetics</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUuLFDEUhYMoTtv6A9xI4UY3Nd48qpK4awZfMOBGF65CKrnVZqhK2koa7X9vmmoVBCWBwM13Dic5hDylcE0B5KtMoRd9C5S2oKhq5T2yoZ3kLQcq75MN6J63mml2RR7lfAcAWgp4SK4YA8W5YBvyZbdkjME1Jf0ILpRTE2Jjm4w-zBhL67_jNIW4bw5pOrmvFgu-bjye6TE4W0KqePSNvdjMWOyQppDnx-TBaKeMTy7nlnx---bTzfv29uO7Dze729YJKUo7eCVR9tYyAVR4QR0X2krFOwlSe1ZTjgNDxRmAGjqhHOvEoPSgFbBeeb4lL1bfw5K-HTEXM4fsamobMR2z0ZVSsuv6Sr78L0l7SUX9l7q35Plf6F06LrG-o_qB1l0PrELXK7S3E5oQx1QW6-ryOAeXIo6hzneScimU5lAFdBW4JeW84GgOS5jtcjIUzLlRszZqaqPm3KiRVfPskuQ4zOh_K35VWAG2ArlexT0uf6L-2_UnPjephg</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Casado-Martinez, M. C.</creator><creator>Duncan, E.</creator><creator>Smith, B. D.</creator><creator>Maher, W. A.</creator><creator>Rainbow, P. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120301</creationdate><title>Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism</title><author>Casado-Martinez, M. C. ; Duncan, E. ; Smith, B. D. ; Maher, W. A. ; Rainbow, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bd87e76aa24014d41c349a78357079d2342fb2e832008b548c254b89b980268d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Arsenic</topic><topic>Arsenicals - adverse effects</topic><topic>Arsenicals - analysis</topic><topic>Arsenicals - pharmacokinetics</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Cell Fractionation</topic><topic>Cellular</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>Debris</topic><topic>Deposition</topic><topic>Detoxification</topic><topic>Detritus</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Exposure</topic><topic>Geologic Sediments - chemistry</topic><topic>Granular materials</topic><topic>Inactivation, Metabolic - physiology</topic><topic>Marinas</topic><topic>Metal concentrations</topic><topic>Metallothioneins</topic><topic>Physiological aspects</topic><topic>Polychaeta - drug effects</topic><topic>Polychaeta - physiology</topic><topic>Proteins</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Speciation</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - pharmacokinetics</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casado-Martinez, M. C.</creatorcontrib><creatorcontrib>Duncan, E.</creatorcontrib><creatorcontrib>Smith, B. D.</creatorcontrib><creatorcontrib>Maher, W. A.</creatorcontrib><creatorcontrib>Rainbow, P. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casado-Martinez, M. C.</au><au>Duncan, E.</au><au>Smith, B. D.</au><au>Maher, W. A.</au><au>Rainbow, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><addtitle>Ecotoxicology</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>21</volume><issue>2</issue><spage>576</spage><epage>590</epage><pages>576-590</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><coden>ECOTEL</coden><abstract>The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22083342</pmid><doi>10.1007/s10646-011-0818-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-9292
ispartof Ecotoxicology (London), 2012-03, Vol.21 (2), p.576-590
issn 0963-9292
1573-3017
language eng
recordid cdi_proquest_miscellaneous_926887556
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Arsenic
Arsenicals - adverse effects
Arsenicals - analysis
Arsenicals - pharmacokinetics
Bioavailability
Biological Availability
Cell Fractionation
Cellular
Cytosol - drug effects
Cytosol - metabolism
Debris
Deposition
Detoxification
Detritus
Earth and Environmental Science
Ecology
Ecotoxicology
Environment
Environmental Management
Exposure
Geologic Sediments - chemistry
Granular materials
Inactivation, Metabolic - physiology
Marinas
Metal concentrations
Metallothioneins
Physiological aspects
Polychaeta - drug effects
Polychaeta - physiology
Proteins
Sediments
Sediments (Geology)
Speciation
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - pharmacokinetics
Water Pollutants, Chemical - toxicity
title Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20toxicity%20in%20a%20sediment-dwelling%20polychaete:%20detoxification%20and%20arsenic%20metabolism&rft.jtitle=Ecotoxicology%20(London)&rft.au=Casado-Martinez,%20M.%20C.&rft.date=2012-03-01&rft.volume=21&rft.issue=2&rft.spage=576&rft.epage=590&rft.pages=576-590&rft.issn=0963-9292&rft.eissn=1573-3017&rft.coden=ECOTEL&rft_id=info:doi/10.1007/s10646-011-0818-7&rft_dat=%3Cgale_proqu%3EA713748930%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920995602&rft_id=info:pmid/22083342&rft_galeid=A713748930&rfr_iscdi=true