Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate miner...
Gespeichert in:
Veröffentlicht in: | Aquatic geochemistry 2012, Vol.18 (1), p.45-75 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Aquatic geochemistry |
container_volume | 18 |
creator | Locsey, Katrina L Grigorescu, Micaela Cox, Malcolm E |
description | A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 −, Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement. |
doi_str_mv | 10.1007/s10498-011-9148-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926887409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926887409</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-a4e87693b43ff92cc841df84bb29b6650b65257afc27d56976f30b68637f2c403</originalsourceid><addsrcrecordid>eNp9kc9OFTEYxSdGExF9AFc2blwN9t_0j7vLDSAJhgQkLptOb3spzm2HdoYLO96Bjc_nk9hhTEhYsOr3nf7OSZtTVR8R3EMQ8q8ZQSpFDRGqJaKivn1V7aCGkxpRjF6XmQhYM8Sat9W7nK9gASGGO9WfX3qw6e_9w1k0v8FxKIs2g48hfwOLUIQbmwe_1pMEogPDpQVntnvc86XvM9i3w9baAH74ULxdXN8BHVbgKMUxrLZTOljGTR-zf8yY7g67uAW-zOB8bIcUe290B_Z11t0AFtejdza9r9443WX74f-5W10cHvxcfq9PTo-Ol4uTWhNJh1pTKziTpKXEOYmNERStnKBti2XLWANb1uCGa2cwXzVMcuZI0QQj3GFDIdmtvsy5fYrXY_ms2vhsbNfpYOOYlcRMCE6hLOTnZ-RVHFMoj1MSckiRRKRAaIZMijkn61Sf_EanO4WgmppSc1OqFKCmptRt8eDZkwsb1jY9Bb9k-jSbnI5Kr5PP6uIcQ0RLtQ3EnJN_NuWivw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907041913</pqid></control><display><type>article</type><title>Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer</title><source>Springer Online Journals Complete</source><creator>Locsey, Katrina L ; Grigorescu, Micaela ; Cox, Malcolm E</creator><creatorcontrib>Locsey, Katrina L ; Grigorescu, Micaela ; Cox, Malcolm E</creatorcontrib><description>A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 −, Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.</description><identifier>ISSN: 1380-6165</identifier><identifier>EISSN: 1573-1421</identifier><identifier>DOI: 10.1007/s10498-011-9148-x</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Aquifer systems ; Aquifers ; Basalt ; calcium ; Carbon dioxide ; Carbonates ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; gibbsite ; goethite ; Groundwater ; Groundwater flow ; Groundwater storage ; hematite ; Hydrogeology ; Hydrology/Water Resources ; Kaolinite ; magnesium ; Mineralogy ; Minerals ; Original Paper ; Pyrite ; pyrites ; Rocks ; salinity ; Silica ; smectite ; soil ; Water Quality/Water Pollution ; weathering ; X-ray diffraction ; zeolites</subject><ispartof>Aquatic geochemistry, 2012, Vol.18 (1), p.45-75</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-a4e87693b43ff92cc841df84bb29b6650b65257afc27d56976f30b68637f2c403</citedby><cites>FETCH-LOGICAL-a394t-a4e87693b43ff92cc841df84bb29b6650b65257afc27d56976f30b68637f2c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10498-011-9148-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10498-011-9148-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Locsey, Katrina L</creatorcontrib><creatorcontrib>Grigorescu, Micaela</creatorcontrib><creatorcontrib>Cox, Malcolm E</creatorcontrib><title>Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer</title><title>Aquatic geochemistry</title><addtitle>Aquat Geochem</addtitle><description>A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 −, Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.</description><subject>Aquifer systems</subject><subject>Aquifers</subject><subject>Basalt</subject><subject>calcium</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>gibbsite</subject><subject>goethite</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Groundwater storage</subject><subject>hematite</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Kaolinite</subject><subject>magnesium</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Original Paper</subject><subject>Pyrite</subject><subject>pyrites</subject><subject>Rocks</subject><subject>salinity</subject><subject>Silica</subject><subject>smectite</subject><subject>soil</subject><subject>Water Quality/Water Pollution</subject><subject>weathering</subject><subject>X-ray diffraction</subject><subject>zeolites</subject><issn>1380-6165</issn><issn>1573-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9OFTEYxSdGExF9AFc2blwN9t_0j7vLDSAJhgQkLptOb3spzm2HdoYLO96Bjc_nk9hhTEhYsOr3nf7OSZtTVR8R3EMQ8q8ZQSpFDRGqJaKivn1V7aCGkxpRjF6XmQhYM8Sat9W7nK9gASGGO9WfX3qw6e_9w1k0v8FxKIs2g48hfwOLUIQbmwe_1pMEogPDpQVntnvc86XvM9i3w9baAH74ULxdXN8BHVbgKMUxrLZTOljGTR-zf8yY7g67uAW-zOB8bIcUe290B_Z11t0AFtejdza9r9443WX74f-5W10cHvxcfq9PTo-Ol4uTWhNJh1pTKziTpKXEOYmNERStnKBti2XLWANb1uCGa2cwXzVMcuZI0QQj3GFDIdmtvsy5fYrXY_ms2vhsbNfpYOOYlcRMCE6hLOTnZ-RVHFMoj1MSckiRRKRAaIZMijkn61Sf_EanO4WgmppSc1OqFKCmptRt8eDZkwsb1jY9Bb9k-jSbnI5Kr5PP6uIcQ0RLtQ3EnJN_NuWivw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Locsey, Katrina L</creator><creator>Grigorescu, Micaela</creator><creator>Cox, Malcolm E</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>2012</creationdate><title>Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer</title><author>Locsey, Katrina L ; Grigorescu, Micaela ; Cox, Malcolm E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-a4e87693b43ff92cc841df84bb29b6650b65257afc27d56976f30b68637f2c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aquifer systems</topic><topic>Aquifers</topic><topic>Basalt</topic><topic>calcium</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>gibbsite</topic><topic>goethite</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Groundwater storage</topic><topic>hematite</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Kaolinite</topic><topic>magnesium</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Original Paper</topic><topic>Pyrite</topic><topic>pyrites</topic><topic>Rocks</topic><topic>salinity</topic><topic>Silica</topic><topic>smectite</topic><topic>soil</topic><topic>Water Quality/Water Pollution</topic><topic>weathering</topic><topic>X-ray diffraction</topic><topic>zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Locsey, Katrina L</creatorcontrib><creatorcontrib>Grigorescu, Micaela</creatorcontrib><creatorcontrib>Cox, Malcolm E</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Aquatic geochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Locsey, Katrina L</au><au>Grigorescu, Micaela</au><au>Cox, Malcolm E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer</atitle><jtitle>Aquatic geochemistry</jtitle><stitle>Aquat Geochem</stitle><date>2012</date><risdate>2012</risdate><volume>18</volume><issue>1</issue><spage>45</spage><epage>75</epage><pages>45-75</pages><issn>1380-6165</issn><eissn>1573-1421</eissn><abstract>A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 −, Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10498-011-9148-x</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-6165 |
ispartof | Aquatic geochemistry, 2012, Vol.18 (1), p.45-75 |
issn | 1380-6165 1573-1421 |
language | eng |
recordid | cdi_proquest_miscellaneous_926887409 |
source | Springer Online Journals Complete |
subjects | Aquifer systems Aquifers Basalt calcium Carbon dioxide Carbonates Earth and Environmental Science Earth Sciences Geochemistry gibbsite goethite Groundwater Groundwater flow Groundwater storage hematite Hydrogeology Hydrology/Water Resources Kaolinite magnesium Mineralogy Minerals Original Paper Pyrite pyrites Rocks salinity Silica smectite soil Water Quality/Water Pollution weathering X-ray diffraction zeolites |
title | Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%93Rock%20Interactions:%20An%20Investigation%20of%20the%20Relationships%20Between%20Mineralogy%20and%20Groundwater%20Composition%20and%20Flow%20in%20a%20Subtropical%20Basalt%20Aquifer&rft.jtitle=Aquatic%20geochemistry&rft.au=Locsey,%20Katrina%20L&rft.date=2012&rft.volume=18&rft.issue=1&rft.spage=45&rft.epage=75&rft.pages=45-75&rft.issn=1380-6165&rft.eissn=1573-1421&rft_id=info:doi/10.1007/s10498-011-9148-x&rft_dat=%3Cproquest_cross%3E926887409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907041913&rft_id=info:pmid/&rfr_iscdi=true |