Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2012-03, Vol.166 (5), p.1248-1263
Hauptverfasser: de Amorim, Eduardo Lucena Cavalcante, Sader, Leandro Takano, Silva, Edson Luiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 5
container_start_page 1248
container_title Applied biochemistry and biotechnology
container_volume 166
creator de Amorim, Eduardo Lucena Cavalcante
Sader, Leandro Takano
Silva, Edson Luiz
description The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L −1 . The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L −1 showed satisfactory H 2 production performance, but the reactor fed with 25 g L −1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L −1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L −1 . The AFBRs operated with glucose concentrations of 2 and 4 g L −1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.
doi_str_mv 10.1007/s12010-011-9511-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926886585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>922760055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-a6a7659b40b7d184aaa000bc959771541c76faff0a59b5e77f8e49144082174a3</originalsourceid><addsrcrecordid>eNqNkUFrFTEUhYNU7LP1B3QjwY2r0ZvMZJIs62ufFQqKteuQydw8pn0vaZOZRf31ZpxaQRAKucnl5LsnhEPICYMPDEB-zIwDgwoYq7SYtxdkxYTQFXDNDsgKuKwrzpU-JK9zvgFgXAn5ihxyzhmvdb0i-dx7dCONnl5NXR6THZGuY3AY5n6IgZZ1ZtMt3WDaF3URLx76FLcY6LcU-8n91q7zELbUBnoaLKbYDY5udtPQDz-xp59KfUfrxpiOyUtvdxnfPJ5H5Hpz_mN9UV1-_fxlfXpZuabWY2VbK1uhuwY62TPVWGsBoHNaaCmZaJiTrbfegy2QQCm9wkazpgHFmWxsfUTeL753Kd5PmEezH7LD3c4GjFM2mrdKtUKJZ5BctgBiJt_9Q97EKYXyjRmqFWgFBWIL5FLMOaE3d2nY2_RgGJg5ObMkZ0pyZk7O6DLz9tF46vbYP038iaoAfAFyuQpbTH9f_r_rLw8koqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922380980</pqid></control><display><type>article</type><title>Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>de Amorim, Eduardo Lucena Cavalcante ; Sader, Leandro Takano ; Silva, Edson Luiz</creator><creatorcontrib>de Amorim, Eduardo Lucena Cavalcante ; Sader, Leandro Takano ; Silva, Edson Luiz</creatorcontrib><description>The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L −1 . The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L −1 showed satisfactory H 2 production performance, but the reactor fed with 25 g L −1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L −1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L −1 . The AFBRs operated with glucose concentrations of 2 and 4 g L −1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-011-9511-9</identifier><identifier>PMID: 22212393</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Acetic Acid - pharmacology ; Anaerobiosis - drug effects ; Anaerobiosis - radiation effects ; Bacteria - drug effects ; Bacteria - metabolism ; Bacteria - radiation effects ; Biochemistry ; Biofilms - drug effects ; Biofilms - growth &amp; development ; Biofilms - radiation effects ; Bioreactors - microbiology ; Biotechnology ; Butyric Acid - pharmacology ; Chemistry ; Chemistry and Materials Science ; Darkness ; Dose-Response Relationship, Drug ; Ethanol - pharmacology ; Fermentation ; Fermentation - radiation effects ; Fluidized bed reactors ; Fluidized beds ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Reactors ; Retention time ; Sludge ; Solubility ; Substrates ; Time Factors</subject><ispartof>Applied biochemistry and biotechnology, 2012-03, Vol.166 (5), p.1248-1263</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-a6a7659b40b7d184aaa000bc959771541c76faff0a59b5e77f8e49144082174a3</citedby><cites>FETCH-LOGICAL-c439t-a6a7659b40b7d184aaa000bc959771541c76faff0a59b5e77f8e49144082174a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-011-9511-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-011-9511-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22212393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Amorim, Eduardo Lucena Cavalcante</creatorcontrib><creatorcontrib>Sader, Leandro Takano</creatorcontrib><creatorcontrib>Silva, Edson Luiz</creatorcontrib><title>Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L −1 . The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L −1 showed satisfactory H 2 production performance, but the reactor fed with 25 g L −1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L −1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L −1 . The AFBRs operated with glucose concentrations of 2 and 4 g L −1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.</description><subject>Acetic Acid - pharmacology</subject><subject>Anaerobiosis - drug effects</subject><subject>Anaerobiosis - radiation effects</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Bacteria - radiation effects</subject><subject>Biochemistry</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth &amp; development</subject><subject>Biofilms - radiation effects</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Butyric Acid - pharmacology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Darkness</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ethanol - pharmacology</subject><subject>Fermentation</subject><subject>Fermentation - radiation effects</subject><subject>Fluidized bed reactors</subject><subject>Fluidized beds</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Reactors</subject><subject>Retention time</subject><subject>Sludge</subject><subject>Solubility</subject><subject>Substrates</subject><subject>Time Factors</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUFrFTEUhYNU7LP1B3QjwY2r0ZvMZJIs62ufFQqKteuQydw8pn0vaZOZRf31ZpxaQRAKucnl5LsnhEPICYMPDEB-zIwDgwoYq7SYtxdkxYTQFXDNDsgKuKwrzpU-JK9zvgFgXAn5ihxyzhmvdb0i-dx7dCONnl5NXR6THZGuY3AY5n6IgZZ1ZtMt3WDaF3URLx76FLcY6LcU-8n91q7zELbUBnoaLKbYDY5udtPQDz-xp59KfUfrxpiOyUtvdxnfPJ5H5Hpz_mN9UV1-_fxlfXpZuabWY2VbK1uhuwY62TPVWGsBoHNaaCmZaJiTrbfegy2QQCm9wkazpgHFmWxsfUTeL753Kd5PmEezH7LD3c4GjFM2mrdKtUKJZ5BctgBiJt_9Q97EKYXyjRmqFWgFBWIL5FLMOaE3d2nY2_RgGJg5ObMkZ0pyZk7O6DLz9tF46vbYP038iaoAfAFyuQpbTH9f_r_rLw8koqo</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>de Amorim, Eduardo Lucena Cavalcante</creator><creator>Sader, Leandro Takano</creator><creator>Silva, Edson Luiz</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120301</creationdate><title>Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor</title><author>de Amorim, Eduardo Lucena Cavalcante ; Sader, Leandro Takano ; Silva, Edson Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-a6a7659b40b7d184aaa000bc959771541c76faff0a59b5e77f8e49144082174a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetic Acid - pharmacology</topic><topic>Anaerobiosis - drug effects</topic><topic>Anaerobiosis - radiation effects</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Bacteria - radiation effects</topic><topic>Biochemistry</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth &amp; development</topic><topic>Biofilms - radiation effects</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Butyric Acid - pharmacology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Darkness</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ethanol - pharmacology</topic><topic>Fermentation</topic><topic>Fermentation - radiation effects</topic><topic>Fluidized bed reactors</topic><topic>Fluidized beds</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Reactors</topic><topic>Retention time</topic><topic>Sludge</topic><topic>Solubility</topic><topic>Substrates</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Amorim, Eduardo Lucena Cavalcante</creatorcontrib><creatorcontrib>Sader, Leandro Takano</creatorcontrib><creatorcontrib>Silva, Edson Luiz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Amorim, Eduardo Lucena Cavalcante</au><au>Sader, Leandro Takano</au><au>Silva, Edson Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>166</volume><issue>5</issue><spage>1248</spage><epage>1263</epage><pages>1248-1263</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L −1 . The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L −1 showed satisfactory H 2 production performance, but the reactor fed with 25 g L −1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L −1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L −1 . The AFBRs operated with glucose concentrations of 2 and 4 g L −1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>22212393</pmid><doi>10.1007/s12010-011-9511-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2012-03, Vol.166 (5), p.1248-1263
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_miscellaneous_926886585
source MEDLINE; SpringerNature Journals
subjects Acetic Acid - pharmacology
Anaerobiosis - drug effects
Anaerobiosis - radiation effects
Bacteria - drug effects
Bacteria - metabolism
Bacteria - radiation effects
Biochemistry
Biofilms - drug effects
Biofilms - growth & development
Biofilms - radiation effects
Bioreactors - microbiology
Biotechnology
Butyric Acid - pharmacology
Chemistry
Chemistry and Materials Science
Darkness
Dose-Response Relationship, Drug
Ethanol - pharmacology
Fermentation
Fermentation - radiation effects
Fluidized bed reactors
Fluidized beds
Glucose
Glucose - metabolism
Glucose - pharmacology
Hydrogen
Hydrogen - metabolism
Hydrogen production
Reactors
Retention time
Sludge
Solubility
Substrates
Time Factors
title Effect of Substrate Concentration on Dark Fermentation Hydrogen Production Using an Anaerobic Fluidized Bed Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Substrate%20Concentration%20on%20Dark%20Fermentation%20Hydrogen%20Production%20Using%20an%20Anaerobic%20Fluidized%20Bed%20Reactor&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=de%20Amorim,%20Eduardo%20Lucena%20Cavalcante&rft.date=2012-03-01&rft.volume=166&rft.issue=5&rft.spage=1248&rft.epage=1263&rft.pages=1248-1263&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-011-9511-9&rft_dat=%3Cproquest_cross%3E922760055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922380980&rft_id=info:pmid/22212393&rfr_iscdi=true