A Stochastic Object Model Conditioned to High-Quality Seismic Data
We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of...
Gespeichert in:
Veröffentlicht in: | Mathematical geosciences 2011-10, Vol.43 (7), p.763-781, Article 763 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781 |
---|---|
container_issue | 7 |
container_start_page | 763 |
container_title | Mathematical geosciences |
container_volume | 43 |
creator | Syversveen, Anne Randi Hauge, Ragnar Tollefsrud, Jan Inge Lægreid, Ulf MacDonald, Alister |
description | We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of seismic data in a true deterministic sense, in which the facies body top and base are resolved and mapped directly, and stochastic methods in which the relationship between seismic attributes and facies is defined by conditional probabilities. The lateral geometry of the facies bodies is controlled by seismic interpretations on horizon slices or by direct body extraction, whereas facies body thickness and cross-sectional shape are defined by a mixture of seismic data, well data, and user defined object shapes. The stochastic terms in the model are used to incorporate local geometric variability, which is used to increase the geological realism of the facies bodies and allow for correct, flexible well conditioning. The result is a set of three-dimensional facies bodies that are constrained to the seismic interpretations and well data. Each body is defined as a parametric object that includes information such as location of the body axis, depositional direction, axis-to-margin normals, and external body geometry. The parametric information is useful for defining geologically realistic intrabody petrophysical trends and for controlling connectivity between stacked facies bodies. |
doi_str_mv | 10.1007/s11004-011-9355-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926884488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762123899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-339ec882dd54086277277bd1081120f45957ae4c9b7a595c80c0e01fad6a94a73</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhRdRsFZ_gG-LIPqymsllN3ms9VKhUqT6HNJstk3Zbuom-9B_b0pLBUFhYAbmO4eZkySXgO4AoeLeQ2w0QwCZIIxl9CjpAS9oxgUjx4c5h9PkzPslQjkQBr3kYZBOg9ML5YPV6WS2NDqkb640dTp0TWmDdY0p0-DSkZ0vsvdO1TZs0qmxfhUFjyqo8-SkUrU3F_veTz6fnz6Go2w8eXkdDsaZopiHjBBhNOe4LBlFPMdFEWtWAuIAGFWUCVYoQ7WYFSrOmiONDIJKlbkSVBWkn9zsfNet--qMD3JlvTZ1rRrjOi8FzjmnlPNI3v5LQpFjwIQLEdGrX-jSdW0T_5BccJxTYFs_2EG6dd63ppLr1q5Uu5GA5DZ-uYtfxvjlNn5Jo-Z6b6y8VnXVqkZbfxBimmNCMIoc3nE-rpq5aX8O-Nv8G0EXkTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898264158</pqid></control><display><type>article</type><title>A Stochastic Object Model Conditioned to High-Quality Seismic Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Syversveen, Anne Randi ; Hauge, Ragnar ; Tollefsrud, Jan Inge ; Lægreid, Ulf ; MacDonald, Alister</creator><creatorcontrib>Syversveen, Anne Randi ; Hauge, Ragnar ; Tollefsrud, Jan Inge ; Lægreid, Ulf ; MacDonald, Alister</creatorcontrib><description>We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of seismic data in a true deterministic sense, in which the facies body top and base are resolved and mapped directly, and stochastic methods in which the relationship between seismic attributes and facies is defined by conditional probabilities. The lateral geometry of the facies bodies is controlled by seismic interpretations on horizon slices or by direct body extraction, whereas facies body thickness and cross-sectional shape are defined by a mixture of seismic data, well data, and user defined object shapes. The stochastic terms in the model are used to incorporate local geometric variability, which is used to increase the geological realism of the facies bodies and allow for correct, flexible well conditioning. The result is a set of three-dimensional facies bodies that are constrained to the seismic interpretations and well data. Each body is defined as a parametric object that includes information such as location of the body axis, depositional direction, axis-to-margin normals, and external body geometry. The parametric information is useful for defining geologically realistic intrabody petrophysical trends and for controlling connectivity between stacked facies bodies.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-011-9355-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied geophysics ; Chemistry and Earth Sciences ; Computer Science ; Conditioning ; Constraints ; Cross sections ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Internal geophysics ; Mathematical models ; Physics ; Reservoirs ; Seismic engineering ; Seismic phenomena ; Seismology ; Statistics for Engineering ; Stochastic models ; Stochasticity ; Well data</subject><ispartof>Mathematical geosciences, 2011-10, Vol.43 (7), p.763-781, Article 763</ispartof><rights>The Author(s) 2011</rights><rights>2015 INIST-CNRS</rights><rights>International Association for Mathematical Geosciences 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a428t-339ec882dd54086277277bd1081120f45957ae4c9b7a595c80c0e01fad6a94a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-011-9355-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-011-9355-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24623320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Syversveen, Anne Randi</creatorcontrib><creatorcontrib>Hauge, Ragnar</creatorcontrib><creatorcontrib>Tollefsrud, Jan Inge</creatorcontrib><creatorcontrib>Lægreid, Ulf</creatorcontrib><creatorcontrib>MacDonald, Alister</creatorcontrib><title>A Stochastic Object Model Conditioned to High-Quality Seismic Data</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of seismic data in a true deterministic sense, in which the facies body top and base are resolved and mapped directly, and stochastic methods in which the relationship between seismic attributes and facies is defined by conditional probabilities. The lateral geometry of the facies bodies is controlled by seismic interpretations on horizon slices or by direct body extraction, whereas facies body thickness and cross-sectional shape are defined by a mixture of seismic data, well data, and user defined object shapes. The stochastic terms in the model are used to incorporate local geometric variability, which is used to increase the geological realism of the facies bodies and allow for correct, flexible well conditioning. The result is a set of three-dimensional facies bodies that are constrained to the seismic interpretations and well data. Each body is defined as a parametric object that includes information such as location of the body axis, depositional direction, axis-to-margin normals, and external body geometry. The parametric information is useful for defining geologically realistic intrabody petrophysical trends and for controlling connectivity between stacked facies bodies.</description><subject>Applied geophysics</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Constraints</subject><subject>Cross sections</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Reservoirs</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Statistics for Engineering</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Well data</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFtLAzEQhRdRsFZ_gG-LIPqymsllN3ms9VKhUqT6HNJstk3Zbuom-9B_b0pLBUFhYAbmO4eZkySXgO4AoeLeQ2w0QwCZIIxl9CjpAS9oxgUjx4c5h9PkzPslQjkQBr3kYZBOg9ML5YPV6WS2NDqkb640dTp0TWmDdY0p0-DSkZ0vsvdO1TZs0qmxfhUFjyqo8-SkUrU3F_veTz6fnz6Go2w8eXkdDsaZopiHjBBhNOe4LBlFPMdFEWtWAuIAGFWUCVYoQ7WYFSrOmiONDIJKlbkSVBWkn9zsfNet--qMD3JlvTZ1rRrjOi8FzjmnlPNI3v5LQpFjwIQLEdGrX-jSdW0T_5BccJxTYFs_2EG6dd63ppLr1q5Uu5GA5DZ-uYtfxvjlNn5Jo-Z6b6y8VnXVqkZbfxBimmNCMIoc3nE-rpq5aX8O-Nv8G0EXkTk</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Syversveen, Anne Randi</creator><creator>Hauge, Ragnar</creator><creator>Tollefsrud, Jan Inge</creator><creator>Lægreid, Ulf</creator><creator>MacDonald, Alister</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20111001</creationdate><title>A Stochastic Object Model Conditioned to High-Quality Seismic Data</title><author>Syversveen, Anne Randi ; Hauge, Ragnar ; Tollefsrud, Jan Inge ; Lægreid, Ulf ; MacDonald, Alister</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-339ec882dd54086277277bd1081120f45957ae4c9b7a595c80c0e01fad6a94a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied geophysics</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Constraints</topic><topic>Cross sections</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Reservoirs</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Statistics for Engineering</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Well data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syversveen, Anne Randi</creatorcontrib><creatorcontrib>Hauge, Ragnar</creatorcontrib><creatorcontrib>Tollefsrud, Jan Inge</creatorcontrib><creatorcontrib>Lægreid, Ulf</creatorcontrib><creatorcontrib>MacDonald, Alister</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syversveen, Anne Randi</au><au>Hauge, Ragnar</au><au>Tollefsrud, Jan Inge</au><au>Lægreid, Ulf</au><au>MacDonald, Alister</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Object Model Conditioned to High-Quality Seismic Data</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>43</volume><issue>7</issue><spage>763</spage><epage>781</epage><pages>763-781</pages><artnum>763</artnum><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of seismic data in a true deterministic sense, in which the facies body top and base are resolved and mapped directly, and stochastic methods in which the relationship between seismic attributes and facies is defined by conditional probabilities. The lateral geometry of the facies bodies is controlled by seismic interpretations on horizon slices or by direct body extraction, whereas facies body thickness and cross-sectional shape are defined by a mixture of seismic data, well data, and user defined object shapes. The stochastic terms in the model are used to incorporate local geometric variability, which is used to increase the geological realism of the facies bodies and allow for correct, flexible well conditioning. The result is a set of three-dimensional facies bodies that are constrained to the seismic interpretations and well data. Each body is defined as a parametric object that includes information such as location of the body axis, depositional direction, axis-to-margin normals, and external body geometry. The parametric information is useful for defining geologically realistic intrabody petrophysical trends and for controlling connectivity between stacked facies bodies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11004-011-9355-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-8961 |
ispartof | Mathematical geosciences, 2011-10, Vol.43 (7), p.763-781, Article 763 |
issn | 1874-8961 1874-8953 |
language | eng |
recordid | cdi_proquest_miscellaneous_926884488 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied geophysics Chemistry and Earth Sciences Computer Science Conditioning Constraints Cross sections Earth and Environmental Science Earth Sciences Earth, ocean, space Exact sciences and technology Geology Geotechnical Engineering & Applied Earth Sciences Hydrogeology Internal geophysics Mathematical models Physics Reservoirs Seismic engineering Seismic phenomena Seismology Statistics for Engineering Stochastic models Stochasticity Well data |
title | A Stochastic Object Model Conditioned to High-Quality Seismic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Object%20Model%20Conditioned%20to%20High-Quality%20Seismic%20Data&rft.jtitle=Mathematical%20geosciences&rft.au=Syversveen,%20Anne%20Randi&rft.date=2011-10-01&rft.volume=43&rft.issue=7&rft.spage=763&rft.epage=781&rft.pages=763-781&rft.artnum=763&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-011-9355-4&rft_dat=%3Cproquest_cross%3E1762123899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898264158&rft_id=info:pmid/&rfr_iscdi=true |