Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species

The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Altho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2012-02, Vol.124 (2), p.345-354
Hauptverfasser: Kubota, Shosei, Konno, Itaru, Kanno, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 345
container_title Theoretical and applied genetics
container_volume 124
creator Kubota, Shosei
Konno, Itaru
Kanno, Akira
description The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.
doi_str_mv 10.1007/s00122-011-1709-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926883893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>916521031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5ea147bbedf57c82eef7bb105082a37a4a36bc5de6b7ebfec517ed8cc29755b33</originalsourceid><addsrcrecordid>eNqNksFu1DAURS0EokPhA9iAxQa6SHm24zhZVhXQSkUsoGvrxXmZusokwU5U5ov4TTzN0FYsKla-ls-9T_Y1Y68FHAsA8zECCCkzECITBqpMPmErkSuZSZnLp2wFkEOmjZYH7EWM1wAgNajn7ECKKjcq1yv2--vQkZs7DHy82nbDmvotH1o-XRFPeo78JI4YcJ3Uh71ER0hHnH6NHfo-ct9PFOJIzrfecReGGLH2nZ-2vKbphqhf4jA0SeKDvOM0Knl8j52PRxz7hg8JDQ-G3uZSfMmetdhFerVfD9nl508_Ts-yi29fzk9PLjKnRTFlmlDkpq6pabVxpSRq006AhlKiMpijKmqnGypqQ3VLyWWoKZ2TldG6VuqQvV9yxzD8nClOduOjo67DnoY52koWZanK6j9IUWgpQIlEvvuHvB7mkO68g3RVaGOqBIkFun2_QK0dg99g2FoBdte2Xdq2qW27a9vK5HmzD57rDTV3jr_1JkAuQExH_ZrC_eTHUt8uphYHi-vgo738LkHk6f-oQhj1KCHSXXL1B2ppymQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915965779</pqid></control><display><type>article</type><title>Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kubota, Shosei ; Konno, Itaru ; Kanno, Akira</creator><creatorcontrib>Kubota, Shosei ; Konno, Itaru ; Kanno, Akira</creatorcontrib><description>The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-011-1709-2</identifier><identifier>PMID: 21947345</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Asparagaceae ; Asparagus ; Asparagus Plant - genetics ; Base Sequence ; Bayes Theorem ; Biochemistry ; Biological Evolution ; Biomedical and Life Sciences ; Biotechnology ; chloroplast DNA ; Cluster Analysis ; Demography ; DNA, Chloroplast - genetics ; gardens ; genetic distance ; Hybridization ; Hybridization, Genetic ; interspecific hybridization ; Life Sciences ; Likelihood Functions ; Models, Genetic ; Molecular Sequence Data ; Morphology ; Original Paper ; Phylogenetics ; Phylogeny ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism ; Reproduction - genetics ; Sequence Analysis, DNA ; Species Specificity ; Vegetables</subject><ispartof>Theoretical and applied genetics, 2012-02, Vol.124 (2), p.345-354</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-5ea147bbedf57c82eef7bb105082a37a4a36bc5de6b7ebfec517ed8cc29755b33</citedby><cites>FETCH-LOGICAL-c516t-5ea147bbedf57c82eef7bb105082a37a4a36bc5de6b7ebfec517ed8cc29755b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-011-1709-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-011-1709-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21947345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubota, Shosei</creatorcontrib><creatorcontrib>Konno, Itaru</creatorcontrib><creatorcontrib>Kanno, Akira</creatorcontrib><title>Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.</description><subject>Agriculture</subject><subject>Asparagaceae</subject><subject>Asparagus</subject><subject>Asparagus Plant - genetics</subject><subject>Base Sequence</subject><subject>Bayes Theorem</subject><subject>Biochemistry</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>chloroplast DNA</subject><subject>Cluster Analysis</subject><subject>Demography</subject><subject>DNA, Chloroplast - genetics</subject><subject>gardens</subject><subject>genetic distance</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>interspecific hybridization</subject><subject>Life Sciences</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism</subject><subject>Reproduction - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Vegetables</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFu1DAURS0EokPhA9iAxQa6SHm24zhZVhXQSkUsoGvrxXmZusokwU5U5ov4TTzN0FYsKla-ls-9T_Y1Y68FHAsA8zECCCkzECITBqpMPmErkSuZSZnLp2wFkEOmjZYH7EWM1wAgNajn7ECKKjcq1yv2--vQkZs7DHy82nbDmvotH1o-XRFPeo78JI4YcJ3Uh71ER0hHnH6NHfo-ct9PFOJIzrfecReGGLH2nZ-2vKbphqhf4jA0SeKDvOM0Knl8j52PRxz7hg8JDQ-G3uZSfMmetdhFerVfD9nl508_Ts-yi29fzk9PLjKnRTFlmlDkpq6pabVxpSRq006AhlKiMpijKmqnGypqQ3VLyWWoKZ2TldG6VuqQvV9yxzD8nClOduOjo67DnoY52koWZanK6j9IUWgpQIlEvvuHvB7mkO68g3RVaGOqBIkFun2_QK0dg99g2FoBdte2Xdq2qW27a9vK5HmzD57rDTV3jr_1JkAuQExH_ZrC_eTHUt8uphYHi-vgo738LkHk6f-oQhj1KCHSXXL1B2ppymQ</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kubota, Shosei</creator><creator>Konno, Itaru</creator><creator>Kanno, Akira</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species</title><author>Kubota, Shosei ; Konno, Itaru ; Kanno, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5ea147bbedf57c82eef7bb105082a37a4a36bc5de6b7ebfec517ed8cc29755b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agriculture</topic><topic>Asparagaceae</topic><topic>Asparagus</topic><topic>Asparagus Plant - genetics</topic><topic>Base Sequence</topic><topic>Bayes Theorem</topic><topic>Biochemistry</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>chloroplast DNA</topic><topic>Cluster Analysis</topic><topic>Demography</topic><topic>DNA, Chloroplast - genetics</topic><topic>gardens</topic><topic>genetic distance</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>interspecific hybridization</topic><topic>Life Sciences</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism</topic><topic>Reproduction - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Shosei</creatorcontrib><creatorcontrib>Konno, Itaru</creatorcontrib><creatorcontrib>Kanno, Akira</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota, Shosei</au><au>Konno, Itaru</au><au>Kanno, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>124</volume><issue>2</issue><spage>345</spage><epage>354</epage><pages>345-354</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21947345</pmid><doi>10.1007/s00122-011-1709-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2012-02, Vol.124 (2), p.345-354
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_926883893
source MEDLINE; SpringerNature Journals
subjects Agriculture
Asparagaceae
Asparagus
Asparagus Plant - genetics
Base Sequence
Bayes Theorem
Biochemistry
Biological Evolution
Biomedical and Life Sciences
Biotechnology
chloroplast DNA
Cluster Analysis
Demography
DNA, Chloroplast - genetics
gardens
genetic distance
Hybridization
Hybridization, Genetic
interspecific hybridization
Life Sciences
Likelihood Functions
Models, Genetic
Molecular Sequence Data
Morphology
Original Paper
Phylogenetics
Phylogeny
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Polymorphism
Reproduction - genetics
Sequence Analysis, DNA
Species Specificity
Vegetables
title Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20phylogeny%20of%20the%20genus%20Asparagus%20(Asparagaceae)%20explains%20interspecific%20crossability%20between%20the%20garden%20asparagus%20(A.%20officinalis)%20and%20other%20Asparagus%20species&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Kubota,%20Shosei&rft.date=2012-02-01&rft.volume=124&rft.issue=2&rft.spage=345&rft.epage=354&rft.pages=345-354&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-011-1709-2&rft_dat=%3Cproquest_cross%3E916521031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915965779&rft_id=info:pmid/21947345&rfr_iscdi=true