Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-03, Vol.148 (5), p.896-907
Hauptverfasser: Ding, Zhihu, Wu, Chang-Jiun, Jaskelioff, Mariela, Ivanova, Elena, Kost-Alimova, Maria, Protopopov, Alexei, Chu, Gerald C., Wang, Guocan, Lu, Xin, Labrot, Emma S., Hu, Jian, Wang, Wei, Xiao, Yonghong, Zhang, Hailei, Zhang, Jianhua, Zhang, Jingfang, Gan, Boyi, Perry, Samuel R., Jiang, Shan, Li, Liren, Horner, James W., Wang, Y. Alan, Chin, Lynda, DePinho, Ronald A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 5
container_start_page 896
container_title Cell
container_volume 148
creator Ding, Zhihu
Wu, Chang-Jiun
Jaskelioff, Mariela
Ivanova, Elena
Kost-Alimova, Maria
Protopopov, Alexei
Chu, Gerald C.
Wang, Guocan
Lu, Xin
Labrot, Emma S.
Hu, Jian
Wang, Wei
Xiao, Yonghong
Zhang, Hailei
Zhang, Jianhua
Zhang, Jingfang
Gan, Boyi
Perry, Samuel R.
Jiang, Shan
Li, Liren
Horner, James W.
Wang, Y. Alan
Chin, Lynda
DePinho, Ronald A.
description To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-β/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities. [Display omitted] ► Telomerase reactivation in murine prostate cancer model promotes malignant progression ► The malignancies acquire capabilities, such as bone metastases, typical of human disease ► The telomere-based genome instability generates human-relevant genomic aberrations ► Comparative genomic analysis identifies a prognosis signature with clinical potential Tumors cells that initially acquire dysfunctional telomeres do not exhibit genomic instability until telomerase becomes reactivated. Genetically engineering this sequence of events in mice promotes a malignant progression in prostate cancer that reproduces features of the human disease and generates a genetic signature with potential prognostic value.
doi_str_mv 10.1016/j.cell.2012.01.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926509646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412001444</els_id><sourcerecordid>2000029772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-4f0b040a026aac68a951d329eaed41cf2bbc7e4d88b8e05cc5f59653321b9e1f3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhC3CA3OglYezYSSxxgZZ_UisQbA-cLMcZF6-SuNhOq357HHbhWOSDD_N7TzPvEfKcQkWBNq93lcFxrBhQVgGtoJYPyIaCbEtOW_aQbAAkK7um5UfkSYw7AOiEEI_JEWM1p1yIDXFbHP2EQUcsvqE2yd3o5PxcWD-O_tbNV8WBwOLsLtplNn_GPxyOQywuluBmLL4GH5NOWGyXyYdY3Lr0s3jn8-QCk86jiPEpeWT1GPHZ4T8mlx_eb08_ledfPn4-fXteGt7JVHILPXDQwBqtTdNpKehQM4kaB06NZX1vWuRD1_UdgjBGWCEbUdeM9hKprY_Jq73vdfC_FoxJTS6uQekZ_RKVZI0A2fAmkyf3kiwHBky2LfsvSnO0XZ2fzCjboyaHEgNadR3cpMNdhtTam9qpVanW3hRQlXvLohcH_6WfcPgn-VtUBl7uAau90lfBRXX5PTs0646yFus1b_YE5nBvHAYVjcPZ4OACmqQG7-7b4DcwC7OF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008838389</pqid></control><display><type>article</type><title>Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Ding, Zhihu ; Wu, Chang-Jiun ; Jaskelioff, Mariela ; Ivanova, Elena ; Kost-Alimova, Maria ; Protopopov, Alexei ; Chu, Gerald C. ; Wang, Guocan ; Lu, Xin ; Labrot, Emma S. ; Hu, Jian ; Wang, Wei ; Xiao, Yonghong ; Zhang, Hailei ; Zhang, Jianhua ; Zhang, Jingfang ; Gan, Boyi ; Perry, Samuel R. ; Jiang, Shan ; Li, Liren ; Horner, James W. ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</creator><creatorcontrib>Ding, Zhihu ; Wu, Chang-Jiun ; Jaskelioff, Mariela ; Ivanova, Elena ; Kost-Alimova, Maria ; Protopopov, Alexei ; Chu, Gerald C. ; Wang, Guocan ; Lu, Xin ; Labrot, Emma S. ; Hu, Jian ; Wang, Wei ; Xiao, Yonghong ; Zhang, Hailei ; Zhang, Jianhua ; Zhang, Jingfang ; Gan, Boyi ; Perry, Samuel R. ; Jiang, Shan ; Li, Liren ; Horner, James W. ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</creatorcontrib><description>To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-β/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities. [Display omitted] ► Telomerase reactivation in murine prostate cancer model promotes malignant progression ► The malignancies acquire capabilities, such as bone metastases, typical of human disease ► The telomere-based genome instability generates human-relevant genomic aberrations ► Comparative genomic analysis identifies a prognosis signature with clinical potential Tumors cells that initially acquire dysfunctional telomeres do not exhibit genomic instability until telomerase becomes reactivated. Genetically engineering this sequence of events in mice promotes a malignant progression in prostate cancer that reproduces features of the human disease and generates a genetic signature with potential prognostic value.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.01.039</identifier><identifier>PMID: 22341455</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alleles ; Animal models ; Animals ; Bone Neoplasms - secondary ; Bone tumors ; Carcinoma ; Cell Line, Tumor ; Crosses, Genetic ; Disease Models, Animal ; DNA Copy Number Variations ; DNA damage ; Female ; Genomes ; Genomic Instability ; genomics ; Humans ; Male ; Metastases ; metastasis ; Mice ; neoplasm cells ; p53 protein ; prostate ; Prostate cancer ; prostatic neoplasms ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - pathology ; PTEN protein ; Smad4 protein ; telomerase ; Telomerase - metabolism ; telomerase reverse transcriptase ; Telomere - metabolism ; Telomeres ; Transforming growth factor- beta ; Tumor cells ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; yields</subject><ispartof>Cell, 2012-03, Vol.148 (5), p.896-907</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-4f0b040a026aac68a951d329eaed41cf2bbc7e4d88b8e05cc5f59653321b9e1f3</citedby><cites>FETCH-LOGICAL-c489t-4f0b040a026aac68a951d329eaed41cf2bbc7e4d88b8e05cc5f59653321b9e1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412001444$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22341455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhihu</creatorcontrib><creatorcontrib>Wu, Chang-Jiun</creatorcontrib><creatorcontrib>Jaskelioff, Mariela</creatorcontrib><creatorcontrib>Ivanova, Elena</creatorcontrib><creatorcontrib>Kost-Alimova, Maria</creatorcontrib><creatorcontrib>Protopopov, Alexei</creatorcontrib><creatorcontrib>Chu, Gerald C.</creatorcontrib><creatorcontrib>Wang, Guocan</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Labrot, Emma S.</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiao, Yonghong</creatorcontrib><creatorcontrib>Zhang, Hailei</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Jingfang</creatorcontrib><creatorcontrib>Gan, Boyi</creatorcontrib><creatorcontrib>Perry, Samuel R.</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Li, Liren</creatorcontrib><creatorcontrib>Horner, James W.</creatorcontrib><creatorcontrib>Wang, Y. Alan</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><title>Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases</title><title>Cell</title><addtitle>Cell</addtitle><description>To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-β/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities. [Display omitted] ► Telomerase reactivation in murine prostate cancer model promotes malignant progression ► The malignancies acquire capabilities, such as bone metastases, typical of human disease ► The telomere-based genome instability generates human-relevant genomic aberrations ► Comparative genomic analysis identifies a prognosis signature with clinical potential Tumors cells that initially acquire dysfunctional telomeres do not exhibit genomic instability until telomerase becomes reactivated. Genetically engineering this sequence of events in mice promotes a malignant progression in prostate cancer that reproduces features of the human disease and generates a genetic signature with potential prognostic value.</description><subject>alleles</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone tumors</subject><subject>Carcinoma</subject><subject>Cell Line, Tumor</subject><subject>Crosses, Genetic</subject><subject>Disease Models, Animal</subject><subject>DNA Copy Number Variations</subject><subject>DNA damage</subject><subject>Female</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>genomics</subject><subject>Humans</subject><subject>Male</subject><subject>Metastases</subject><subject>metastasis</subject><subject>Mice</subject><subject>neoplasm cells</subject><subject>p53 protein</subject><subject>prostate</subject><subject>Prostate cancer</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - pathology</subject><subject>PTEN protein</subject><subject>Smad4 protein</subject><subject>telomerase</subject><subject>Telomerase - metabolism</subject><subject>telomerase reverse transcriptase</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><subject>Transforming growth factor- beta</subject><subject>Tumor cells</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>yields</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhC3CA3OglYezYSSxxgZZ_UisQbA-cLMcZF6-SuNhOq357HHbhWOSDD_N7TzPvEfKcQkWBNq93lcFxrBhQVgGtoJYPyIaCbEtOW_aQbAAkK7um5UfkSYw7AOiEEI_JEWM1p1yIDXFbHP2EQUcsvqE2yd3o5PxcWD-O_tbNV8WBwOLsLtplNn_GPxyOQywuluBmLL4GH5NOWGyXyYdY3Lr0s3jn8-QCk86jiPEpeWT1GPHZ4T8mlx_eb08_ledfPn4-fXteGt7JVHILPXDQwBqtTdNpKehQM4kaB06NZX1vWuRD1_UdgjBGWCEbUdeM9hKprY_Jq73vdfC_FoxJTS6uQekZ_RKVZI0A2fAmkyf3kiwHBky2LfsvSnO0XZ2fzCjboyaHEgNadR3cpMNdhtTam9qpVanW3hRQlXvLohcH_6WfcPgn-VtUBl7uAau90lfBRXX5PTs0646yFus1b_YE5nBvHAYVjcPZ4OACmqQG7-7b4DcwC7OF</recordid><startdate>20120302</startdate><enddate>20120302</enddate><creator>Ding, Zhihu</creator><creator>Wu, Chang-Jiun</creator><creator>Jaskelioff, Mariela</creator><creator>Ivanova, Elena</creator><creator>Kost-Alimova, Maria</creator><creator>Protopopov, Alexei</creator><creator>Chu, Gerald C.</creator><creator>Wang, Guocan</creator><creator>Lu, Xin</creator><creator>Labrot, Emma S.</creator><creator>Hu, Jian</creator><creator>Wang, Wei</creator><creator>Xiao, Yonghong</creator><creator>Zhang, Hailei</creator><creator>Zhang, Jianhua</creator><creator>Zhang, Jingfang</creator><creator>Gan, Boyi</creator><creator>Perry, Samuel R.</creator><creator>Jiang, Shan</creator><creator>Li, Liren</creator><creator>Horner, James W.</creator><creator>Wang, Y. Alan</creator><creator>Chin, Lynda</creator><creator>DePinho, Ronald A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope></search><sort><creationdate>20120302</creationdate><title>Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases</title><author>Ding, Zhihu ; Wu, Chang-Jiun ; Jaskelioff, Mariela ; Ivanova, Elena ; Kost-Alimova, Maria ; Protopopov, Alexei ; Chu, Gerald C. ; Wang, Guocan ; Lu, Xin ; Labrot, Emma S. ; Hu, Jian ; Wang, Wei ; Xiao, Yonghong ; Zhang, Hailei ; Zhang, Jianhua ; Zhang, Jingfang ; Gan, Boyi ; Perry, Samuel R. ; Jiang, Shan ; Li, Liren ; Horner, James W. ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-4f0b040a026aac68a951d329eaed41cf2bbc7e4d88b8e05cc5f59653321b9e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alleles</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone tumors</topic><topic>Carcinoma</topic><topic>Cell Line, Tumor</topic><topic>Crosses, Genetic</topic><topic>Disease Models, Animal</topic><topic>DNA Copy Number Variations</topic><topic>DNA damage</topic><topic>Female</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>genomics</topic><topic>Humans</topic><topic>Male</topic><topic>Metastases</topic><topic>metastasis</topic><topic>Mice</topic><topic>neoplasm cells</topic><topic>p53 protein</topic><topic>prostate</topic><topic>Prostate cancer</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - pathology</topic><topic>PTEN protein</topic><topic>Smad4 protein</topic><topic>telomerase</topic><topic>Telomerase - metabolism</topic><topic>telomerase reverse transcriptase</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><topic>Transforming growth factor- beta</topic><topic>Tumor cells</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhihu</creatorcontrib><creatorcontrib>Wu, Chang-Jiun</creatorcontrib><creatorcontrib>Jaskelioff, Mariela</creatorcontrib><creatorcontrib>Ivanova, Elena</creatorcontrib><creatorcontrib>Kost-Alimova, Maria</creatorcontrib><creatorcontrib>Protopopov, Alexei</creatorcontrib><creatorcontrib>Chu, Gerald C.</creatorcontrib><creatorcontrib>Wang, Guocan</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Labrot, Emma S.</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiao, Yonghong</creatorcontrib><creatorcontrib>Zhang, Hailei</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhang, Jingfang</creatorcontrib><creatorcontrib>Gan, Boyi</creatorcontrib><creatorcontrib>Perry, Samuel R.</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Li, Liren</creatorcontrib><creatorcontrib>Horner, James W.</creatorcontrib><creatorcontrib>Wang, Y. Alan</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhihu</au><au>Wu, Chang-Jiun</au><au>Jaskelioff, Mariela</au><au>Ivanova, Elena</au><au>Kost-Alimova, Maria</au><au>Protopopov, Alexei</au><au>Chu, Gerald C.</au><au>Wang, Guocan</au><au>Lu, Xin</au><au>Labrot, Emma S.</au><au>Hu, Jian</au><au>Wang, Wei</au><au>Xiao, Yonghong</au><au>Zhang, Hailei</au><au>Zhang, Jianhua</au><au>Zhang, Jingfang</au><au>Gan, Boyi</au><au>Perry, Samuel R.</au><au>Jiang, Shan</au><au>Li, Liren</au><au>Horner, James W.</au><au>Wang, Y. Alan</au><au>Chin, Lynda</au><au>DePinho, Ronald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-03-02</date><risdate>2012</risdate><volume>148</volume><issue>5</issue><spage>896</spage><epage>907</epage><pages>896-907</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-β/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities. [Display omitted] ► Telomerase reactivation in murine prostate cancer model promotes malignant progression ► The malignancies acquire capabilities, such as bone metastases, typical of human disease ► The telomere-based genome instability generates human-relevant genomic aberrations ► Comparative genomic analysis identifies a prognosis signature with clinical potential Tumors cells that initially acquire dysfunctional telomeres do not exhibit genomic instability until telomerase becomes reactivated. Genetically engineering this sequence of events in mice promotes a malignant progression in prostate cancer that reproduces features of the human disease and generates a genetic signature with potential prognostic value.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22341455</pmid><doi>10.1016/j.cell.2012.01.039</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-03, Vol.148 (5), p.896-907
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_926509646
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects alleles
Animal models
Animals
Bone Neoplasms - secondary
Bone tumors
Carcinoma
Cell Line, Tumor
Crosses, Genetic
Disease Models, Animal
DNA Copy Number Variations
DNA damage
Female
Genomes
Genomic Instability
genomics
Humans
Male
Metastases
metastasis
Mice
neoplasm cells
p53 protein
prostate
Prostate cancer
prostatic neoplasms
Prostatic Neoplasms - genetics
Prostatic Neoplasms - pathology
PTEN protein
Smad4 protein
telomerase
Telomerase - metabolism
telomerase reverse transcriptase
Telomere - metabolism
Telomeres
Transforming growth factor- beta
Tumor cells
Tumor suppressor genes
Tumor Suppressor Protein p53 - metabolism
Tumors
yields
title Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomerase%20Reactivation%20following%20Telomere%20Dysfunction%20Yields%20Murine%20Prostate%20Tumors%20with%20Bone%20Metastases&rft.jtitle=Cell&rft.au=Ding,%20Zhihu&rft.date=2012-03-02&rft.volume=148&rft.issue=5&rft.spage=896&rft.epage=907&rft.pages=896-907&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.01.039&rft_dat=%3Cproquest_cross%3E2000029772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008838389&rft_id=info:pmid/22341455&rft_els_id=S0092867412001444&rfr_iscdi=true