Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery
[Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2012-03, Vol.419 (1), p.32-37 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | Biochemical and biophysical research communications |
container_volume | 419 |
creator | Hosoya, Hitomi Kadowaki, Koji Matsusaki, Michiya Cabral, Horacio Nishihara, Hiroshi Ijichi, Hideaki Koike, Kazuhiko Kataoka, Kazunori Miyazono, Kohei Akashi, Mitsuru Kano, Mitsunobu R. |
description | [Display omitted]
► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated.
Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated. |
doi_str_mv | 10.1016/j.bbrc.2012.01.117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926508932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X12001647</els_id><sourcerecordid>926508932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1ERbeFL8AB-cYpweOkzhpxqapSkCpxaaXeLP8ZL14l9mJnI_Xb19EWjpxm9Pze0_hHyEdgLTAQX_atMdm2nAFvGbQAwxuyASZZw4H1b8mGMSYaLuHpnFyUsmcMoBfyHTnnvOPQye2GLLdxFyJiDnFHfTA5zcHSOZRyRBoiPehoM-pVtHXF_JVe05gWHOn8OyM2LkwYS0hRj3RKbtVTDS5Y5rDTM9KoYzroXBtGpPU9LJif35Mzr8eCH17nJXn8fvtw86O5_3X38-b6vrE9h7kZ_ABuMGAYasf4ldXOCN0J76CXINFa4_sBPfit14CdkV4K2fXCiypY2V2Sz6feQ05_jvUmNYVicRx1xHQsSnJxxbay49XJT06bUykZvTrkMOn8rICpFbfaqxW3WnErBqrirqFPr_VHM6H7F_nLtxq-nQxYP7kEzKrYgJWjCxntrFwK_-t_ATZdlJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926508932</pqid></control><display><type>article</type><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</creator><creatorcontrib>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</creatorcontrib><description>[Display omitted]
► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated.
Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2012.01.117</identifier><identifier>PMID: 22321398</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antineoplastic Agents - administration & dosage ; Drug Delivery Systems ; Fibroblasts ; Fibroblasts - metabolism ; Fibrosis ; Mice ; Models, Biological ; NanoDDS ; Nanoparticles ; NIH 3T3 Cells ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Permeability ; Tissue Engineering - methods</subject><ispartof>Biochemical and biophysical research communications, 2012-03, Vol.419 (1), p.32-37</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</citedby><cites>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X12001647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22321398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosoya, Hitomi</creatorcontrib><creatorcontrib>Kadowaki, Koji</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><creatorcontrib>Cabral, Horacio</creatorcontrib><creatorcontrib>Nishihara, Hiroshi</creatorcontrib><creatorcontrib>Ijichi, Hideaki</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Kataoka, Kazunori</creatorcontrib><creatorcontrib>Miyazono, Kohei</creatorcontrib><creatorcontrib>Akashi, Mitsuru</creatorcontrib><creatorcontrib>Kano, Mitsunobu R.</creatorcontrib><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>[Display omitted]
► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated.
Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</description><subject>Animals</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Drug Delivery Systems</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>NanoDDS</subject><subject>Nanoparticles</subject><subject>NIH 3T3 Cells</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Permeability</subject><subject>Tissue Engineering - methods</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS1ERbeFL8AB-cYpweOkzhpxqapSkCpxaaXeLP8ZL14l9mJnI_Xb19EWjpxm9Pze0_hHyEdgLTAQX_atMdm2nAFvGbQAwxuyASZZw4H1b8mGMSYaLuHpnFyUsmcMoBfyHTnnvOPQye2GLLdxFyJiDnFHfTA5zcHSOZRyRBoiPehoM-pVtHXF_JVe05gWHOn8OyM2LkwYS0hRj3RKbtVTDS5Y5rDTM9KoYzroXBtGpPU9LJif35Mzr8eCH17nJXn8fvtw86O5_3X38-b6vrE9h7kZ_ABuMGAYasf4ldXOCN0J76CXINFa4_sBPfit14CdkV4K2fXCiypY2V2Sz6feQ05_jvUmNYVicRx1xHQsSnJxxbay49XJT06bUykZvTrkMOn8rICpFbfaqxW3WnErBqrirqFPr_VHM6H7F_nLtxq-nQxYP7kEzKrYgJWjCxntrFwK_-t_ATZdlJY</recordid><startdate>20120302</startdate><enddate>20120302</enddate><creator>Hosoya, Hitomi</creator><creator>Kadowaki, Koji</creator><creator>Matsusaki, Michiya</creator><creator>Cabral, Horacio</creator><creator>Nishihara, Hiroshi</creator><creator>Ijichi, Hideaki</creator><creator>Koike, Kazuhiko</creator><creator>Kataoka, Kazunori</creator><creator>Miyazono, Kohei</creator><creator>Akashi, Mitsuru</creator><creator>Kano, Mitsunobu R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120302</creationdate><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><author>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Drug Delivery Systems</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>NanoDDS</topic><topic>Nanoparticles</topic><topic>NIH 3T3 Cells</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Permeability</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosoya, Hitomi</creatorcontrib><creatorcontrib>Kadowaki, Koji</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><creatorcontrib>Cabral, Horacio</creatorcontrib><creatorcontrib>Nishihara, Hiroshi</creatorcontrib><creatorcontrib>Ijichi, Hideaki</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Kataoka, Kazunori</creatorcontrib><creatorcontrib>Miyazono, Kohei</creatorcontrib><creatorcontrib>Akashi, Mitsuru</creatorcontrib><creatorcontrib>Kano, Mitsunobu R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosoya, Hitomi</au><au>Kadowaki, Koji</au><au>Matsusaki, Michiya</au><au>Cabral, Horacio</au><au>Nishihara, Hiroshi</au><au>Ijichi, Hideaki</au><au>Koike, Kazuhiko</au><au>Kataoka, Kazunori</au><au>Miyazono, Kohei</au><au>Akashi, Mitsuru</au><au>Kano, Mitsunobu R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2012-03-02</date><risdate>2012</risdate><volume>419</volume><issue>1</issue><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>[Display omitted]
► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated.
Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22321398</pmid><doi>10.1016/j.bbrc.2012.01.117</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2012-03, Vol.419 (1), p.32-37 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_926508932 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Antineoplastic Agents - administration & dosage Drug Delivery Systems Fibroblasts Fibroblasts - metabolism Fibrosis Mice Models, Biological NanoDDS Nanoparticles NIH 3T3 Cells Pancreatic cancer Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Permeability Tissue Engineering - methods |
title | Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20fibrotic%20tissue%20in%20pancreatic%20cancer:%20A%20novel%20three-dimensional%20model%20to%20investigate%20nanoparticle%20delivery&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Hosoya,%20Hitomi&rft.date=2012-03-02&rft.volume=419&rft.issue=1&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2012.01.117&rft_dat=%3Cproquest_cross%3E926508932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926508932&rft_id=info:pmid/22321398&rft_els_id=S0006291X12001647&rfr_iscdi=true |