Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery

[Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2012-03, Vol.419 (1), p.32-37
Hauptverfasser: Hosoya, Hitomi, Kadowaki, Koji, Matsusaki, Michiya, Cabral, Horacio, Nishihara, Hiroshi, Ijichi, Hideaki, Koike, Kazuhiko, Kataoka, Kazunori, Miyazono, Kohei, Akashi, Mitsuru, Kano, Mitsunobu R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 32
container_title Biochemical and biophysical research communications
container_volume 419
creator Hosoya, Hitomi
Kadowaki, Koji
Matsusaki, Michiya
Cabral, Horacio
Nishihara, Hiroshi
Ijichi, Hideaki
Koike, Kazuhiko
Kataoka, Kazunori
Miyazono, Kohei
Akashi, Mitsuru
Kano, Mitsunobu R.
description [Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.
doi_str_mv 10.1016/j.bbrc.2012.01.117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926508932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X12001647</els_id><sourcerecordid>926508932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1ERbeFL8AB-cYpweOkzhpxqapSkCpxaaXeLP8ZL14l9mJnI_Xb19EWjpxm9Pze0_hHyEdgLTAQX_atMdm2nAFvGbQAwxuyASZZw4H1b8mGMSYaLuHpnFyUsmcMoBfyHTnnvOPQye2GLLdxFyJiDnFHfTA5zcHSOZRyRBoiPehoM-pVtHXF_JVe05gWHOn8OyM2LkwYS0hRj3RKbtVTDS5Y5rDTM9KoYzroXBtGpPU9LJif35Mzr8eCH17nJXn8fvtw86O5_3X38-b6vrE9h7kZ_ABuMGAYasf4ldXOCN0J76CXINFa4_sBPfit14CdkV4K2fXCiypY2V2Sz6feQ05_jvUmNYVicRx1xHQsSnJxxbay49XJT06bUykZvTrkMOn8rICpFbfaqxW3WnErBqrirqFPr_VHM6H7F_nLtxq-nQxYP7kEzKrYgJWjCxntrFwK_-t_ATZdlJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926508932</pqid></control><display><type>article</type><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</creator><creatorcontrib>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</creatorcontrib><description>[Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2012.01.117</identifier><identifier>PMID: 22321398</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antineoplastic Agents - administration &amp; dosage ; Drug Delivery Systems ; Fibroblasts ; Fibroblasts - metabolism ; Fibrosis ; Mice ; Models, Biological ; NanoDDS ; Nanoparticles ; NIH 3T3 Cells ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Permeability ; Tissue Engineering - methods</subject><ispartof>Biochemical and biophysical research communications, 2012-03, Vol.419 (1), p.32-37</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</citedby><cites>FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X12001647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22321398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosoya, Hitomi</creatorcontrib><creatorcontrib>Kadowaki, Koji</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><creatorcontrib>Cabral, Horacio</creatorcontrib><creatorcontrib>Nishihara, Hiroshi</creatorcontrib><creatorcontrib>Ijichi, Hideaki</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Kataoka, Kazunori</creatorcontrib><creatorcontrib>Miyazono, Kohei</creatorcontrib><creatorcontrib>Akashi, Mitsuru</creatorcontrib><creatorcontrib>Kano, Mitsunobu R.</creatorcontrib><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>[Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</description><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Drug Delivery Systems</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>NanoDDS</subject><subject>Nanoparticles</subject><subject>NIH 3T3 Cells</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Permeability</subject><subject>Tissue Engineering - methods</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS1ERbeFL8AB-cYpweOkzhpxqapSkCpxaaXeLP8ZL14l9mJnI_Xb19EWjpxm9Pze0_hHyEdgLTAQX_atMdm2nAFvGbQAwxuyASZZw4H1b8mGMSYaLuHpnFyUsmcMoBfyHTnnvOPQye2GLLdxFyJiDnFHfTA5zcHSOZRyRBoiPehoM-pVtHXF_JVe05gWHOn8OyM2LkwYS0hRj3RKbtVTDS5Y5rDTM9KoYzroXBtGpPU9LJif35Mzr8eCH17nJXn8fvtw86O5_3X38-b6vrE9h7kZ_ABuMGAYasf4ldXOCN0J76CXINFa4_sBPfit14CdkV4K2fXCiypY2V2Sz6feQ05_jvUmNYVicRx1xHQsSnJxxbay49XJT06bUykZvTrkMOn8rICpFbfaqxW3WnErBqrirqFPr_VHM6H7F_nLtxq-nQxYP7kEzKrYgJWjCxntrFwK_-t_ATZdlJY</recordid><startdate>20120302</startdate><enddate>20120302</enddate><creator>Hosoya, Hitomi</creator><creator>Kadowaki, Koji</creator><creator>Matsusaki, Michiya</creator><creator>Cabral, Horacio</creator><creator>Nishihara, Hiroshi</creator><creator>Ijichi, Hideaki</creator><creator>Koike, Kazuhiko</creator><creator>Kataoka, Kazunori</creator><creator>Miyazono, Kohei</creator><creator>Akashi, Mitsuru</creator><creator>Kano, Mitsunobu R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120302</creationdate><title>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</title><author>Hosoya, Hitomi ; Kadowaki, Koji ; Matsusaki, Michiya ; Cabral, Horacio ; Nishihara, Hiroshi ; Ijichi, Hideaki ; Koike, Kazuhiko ; Kataoka, Kazunori ; Miyazono, Kohei ; Akashi, Mitsuru ; Kano, Mitsunobu R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7f71d7b1b0ead025cadb6a36fd14919eccbf47ef1f8fa1e3b9f969346f68fac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Drug Delivery Systems</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>NanoDDS</topic><topic>Nanoparticles</topic><topic>NIH 3T3 Cells</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Permeability</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosoya, Hitomi</creatorcontrib><creatorcontrib>Kadowaki, Koji</creatorcontrib><creatorcontrib>Matsusaki, Michiya</creatorcontrib><creatorcontrib>Cabral, Horacio</creatorcontrib><creatorcontrib>Nishihara, Hiroshi</creatorcontrib><creatorcontrib>Ijichi, Hideaki</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Kataoka, Kazunori</creatorcontrib><creatorcontrib>Miyazono, Kohei</creatorcontrib><creatorcontrib>Akashi, Mitsuru</creatorcontrib><creatorcontrib>Kano, Mitsunobu R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosoya, Hitomi</au><au>Kadowaki, Koji</au><au>Matsusaki, Michiya</au><au>Cabral, Horacio</au><au>Nishihara, Hiroshi</au><au>Ijichi, Hideaki</au><au>Koike, Kazuhiko</au><au>Kataoka, Kazunori</au><au>Miyazono, Kohei</au><au>Akashi, Mitsuru</au><au>Kano, Mitsunobu R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2012-03-02</date><risdate>2012</risdate><volume>419</volume><issue>1</issue><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>[Display omitted] ► We engineered fibrotic tissue in pancreatic tumor using a multilayer culture technique. ► The method models three-dimensional migration of drugs in fibrotic tissue. ► The model permits type and number of fibroblasts to be easily regulated. Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22321398</pmid><doi>10.1016/j.bbrc.2012.01.117</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2012-03, Vol.419 (1), p.32-37
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_926508932
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Antineoplastic Agents - administration & dosage
Drug Delivery Systems
Fibroblasts
Fibroblasts - metabolism
Fibrosis
Mice
Models, Biological
NanoDDS
Nanoparticles
NIH 3T3 Cells
Pancreatic cancer
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Permeability
Tissue Engineering - methods
title Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20fibrotic%20tissue%20in%20pancreatic%20cancer:%20A%20novel%20three-dimensional%20model%20to%20investigate%20nanoparticle%20delivery&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Hosoya,%20Hitomi&rft.date=2012-03-02&rft.volume=419&rft.issue=1&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2012.01.117&rft_dat=%3Cproquest_cross%3E926508932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926508932&rft_id=info:pmid/22321398&rft_els_id=S0006291X12001647&rfr_iscdi=true