Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO
The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2011-08, Vol.94 (8), p.2339-2343 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2343 |
---|---|
container_issue | 8 |
container_start_page | 2339 |
container_title | Journal of the American Ceramic Society |
container_volume | 94 |
creator | Kinemuchi, Yoshiaki Nakano, Hiromi Kaga, Hisashi Tanaka, Satoshi Uematsu, Keizo Watari, Koji |
description | The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO. |
doi_str_mv | 10.1111/j.1551-2916.2010.04373.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926333161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692303093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EEkPhHSw2sMngvzj2BikahraopRIMtGJz5UkcyYMbT-0EMm9fh0FdsED1xvdef-fI9kEIU7Kkeb3bLWlZ0oJpKpeM5CkRvOLL6QlaPBw8RQtCCCsqxchz9CKlXW6pVmKBNpeuiSENcWyGMRqP179ca_vG4tDhM-M9vgxb591wwHXvUhhi2B-w63FT1JNLeGOnrLMtrn3xIexz8aO_eomedcYn--rvfoK-fVxvVmfFxdXp-aq-KJpSMF5YoSujVKcrMt_HStaqSnKRR7QUmpbbkm8pJ13DFG25EVsudGfbLDKUdJKfoDdH330Md6NNA9y61FjvTW_DmEAzyTmnkj6GZFrJUmTy7X9JKjXjhBPNM_r6H3QXxtjnF4NSkspKKpYhdYTmb07RdrCP7tbEA1ACc4KwgzkomIOCOUH4kyBMWfr-KP3tvD08Wgef6tV6LrNBcTRwabDTg4GJP0FWvCrh-vMpfFE331fi5hq-8ns4v637</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>886167682</pqid></control><display><type>article</type><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><source>Wiley Journals</source><creator>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</creator><creatorcontrib>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</creatorcontrib><description>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2010.04373.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Aluminum ; Anisotropy ; Ceramics ; Conductivity ; Dispersions ; Grain boundaries ; Halls ; Microstructure ; Resistivity ; Scanning electron microscopy ; Segregations ; Temperature ; Zinc oxide</subject><ispartof>Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2339-2343</ispartof><rights>2011 The American Ceramic Society</rights><rights>Copyright American Ceramic Society Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</citedby><cites>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2010.04373.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2010.04373.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Nakano, Hiromi</creatorcontrib><creatorcontrib>Kaga, Hisashi</creatorcontrib><creatorcontrib>Tanaka, Satoshi</creatorcontrib><creatorcontrib>Uematsu, Keizo</creatorcontrib><creatorcontrib>Watari, Koji</creatorcontrib><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><title>Journal of the American Ceramic Society</title><description>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</description><subject>Aluminum</subject><subject>Anisotropy</subject><subject>Ceramics</subject><subject>Conductivity</subject><subject>Dispersions</subject><subject>Grain boundaries</subject><subject>Halls</subject><subject>Microstructure</subject><subject>Resistivity</subject><subject>Scanning electron microscopy</subject><subject>Segregations</subject><subject>Temperature</subject><subject>Zinc oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS0EEkPhHSw2sMngvzj2BikahraopRIMtGJz5UkcyYMbT-0EMm9fh0FdsED1xvdef-fI9kEIU7Kkeb3bLWlZ0oJpKpeM5CkRvOLL6QlaPBw8RQtCCCsqxchz9CKlXW6pVmKBNpeuiSENcWyGMRqP179ca_vG4tDhM-M9vgxb591wwHXvUhhi2B-w63FT1JNLeGOnrLMtrn3xIexz8aO_eomedcYn--rvfoK-fVxvVmfFxdXp-aq-KJpSMF5YoSujVKcrMt_HStaqSnKRR7QUmpbbkm8pJ13DFG25EVsudGfbLDKUdJKfoDdH330Md6NNA9y61FjvTW_DmEAzyTmnkj6GZFrJUmTy7X9JKjXjhBPNM_r6H3QXxtjnF4NSkspKKpYhdYTmb07RdrCP7tbEA1ACc4KwgzkomIOCOUH4kyBMWfr-KP3tvD08Wgef6tV6LrNBcTRwabDTg4GJP0FWvCrh-vMpfFE331fi5hq-8ns4v637</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Kinemuchi, Yoshiaki</creator><creator>Nakano, Hiromi</creator><creator>Kaga, Hisashi</creator><creator>Tanaka, Satoshi</creator><creator>Uematsu, Keizo</creator><creator>Watari, Koji</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201108</creationdate><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><author>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum</topic><topic>Anisotropy</topic><topic>Ceramics</topic><topic>Conductivity</topic><topic>Dispersions</topic><topic>Grain boundaries</topic><topic>Halls</topic><topic>Microstructure</topic><topic>Resistivity</topic><topic>Scanning electron microscopy</topic><topic>Segregations</topic><topic>Temperature</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Nakano, Hiromi</creatorcontrib><creatorcontrib>Kaga, Hisashi</creatorcontrib><creatorcontrib>Tanaka, Satoshi</creatorcontrib><creatorcontrib>Uematsu, Keizo</creatorcontrib><creatorcontrib>Watari, Koji</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinemuchi, Yoshiaki</au><au>Nakano, Hiromi</au><au>Kaga, Hisashi</au><au>Tanaka, Satoshi</au><au>Uematsu, Keizo</au><au>Watari, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2011-08</date><risdate>2011</risdate><volume>94</volume><issue>8</issue><spage>2339</spage><epage>2343</epage><pages>2339-2343</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2010.04373.x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2339-2343 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_926333161 |
source | Wiley Journals |
subjects | Aluminum Anisotropy Ceramics Conductivity Dispersions Grain boundaries Halls Microstructure Resistivity Scanning electron microscopy Segregations Temperature Zinc oxide |
title | Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Evidence%20of%20Hall%20Mobility%20Anisotropy%20in%20c-Axis%20Textured%20Al-Doped%20ZnO&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Kinemuchi,%20Yoshiaki&rft.date=2011-08&rft.volume=94&rft.issue=8&rft.spage=2339&rft.epage=2343&rft.pages=2339-2343&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2010.04373.x&rft_dat=%3Cproquest_cross%3E1692303093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=886167682&rft_id=info:pmid/&rfr_iscdi=true |