Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO

The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2011-08, Vol.94 (8), p.2339-2343
Hauptverfasser: Kinemuchi, Yoshiaki, Nakano, Hiromi, Kaga, Hisashi, Tanaka, Satoshi, Uematsu, Keizo, Watari, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2343
container_issue 8
container_start_page 2339
container_title Journal of the American Ceramic Society
container_volume 94
creator Kinemuchi, Yoshiaki
Nakano, Hiromi
Kaga, Hisashi
Tanaka, Satoshi
Uematsu, Keizo
Watari, Koji
description The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.
doi_str_mv 10.1111/j.1551-2916.2010.04373.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926333161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692303093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EEkPhHSw2sMngvzj2BikahraopRIMtGJz5UkcyYMbT-0EMm9fh0FdsED1xvdef-fI9kEIU7Kkeb3bLWlZ0oJpKpeM5CkRvOLL6QlaPBw8RQtCCCsqxchz9CKlXW6pVmKBNpeuiSENcWyGMRqP179ca_vG4tDhM-M9vgxb591wwHXvUhhi2B-w63FT1JNLeGOnrLMtrn3xIexz8aO_eomedcYn--rvfoK-fVxvVmfFxdXp-aq-KJpSMF5YoSujVKcrMt_HStaqSnKRR7QUmpbbkm8pJ13DFG25EVsudGfbLDKUdJKfoDdH330Md6NNA9y61FjvTW_DmEAzyTmnkj6GZFrJUmTy7X9JKjXjhBPNM_r6H3QXxtjnF4NSkspKKpYhdYTmb07RdrCP7tbEA1ACc4KwgzkomIOCOUH4kyBMWfr-KP3tvD08Wgef6tV6LrNBcTRwabDTg4GJP0FWvCrh-vMpfFE331fi5hq-8ns4v637</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>886167682</pqid></control><display><type>article</type><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><source>Wiley Journals</source><creator>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</creator><creatorcontrib>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</creatorcontrib><description>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2010.04373.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Aluminum ; Anisotropy ; Ceramics ; Conductivity ; Dispersions ; Grain boundaries ; Halls ; Microstructure ; Resistivity ; Scanning electron microscopy ; Segregations ; Temperature ; Zinc oxide</subject><ispartof>Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2339-2343</ispartof><rights>2011 The American Ceramic Society</rights><rights>Copyright American Ceramic Society Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</citedby><cites>FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2010.04373.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2010.04373.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Nakano, Hiromi</creatorcontrib><creatorcontrib>Kaga, Hisashi</creatorcontrib><creatorcontrib>Tanaka, Satoshi</creatorcontrib><creatorcontrib>Uematsu, Keizo</creatorcontrib><creatorcontrib>Watari, Koji</creatorcontrib><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><title>Journal of the American Ceramic Society</title><description>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</description><subject>Aluminum</subject><subject>Anisotropy</subject><subject>Ceramics</subject><subject>Conductivity</subject><subject>Dispersions</subject><subject>Grain boundaries</subject><subject>Halls</subject><subject>Microstructure</subject><subject>Resistivity</subject><subject>Scanning electron microscopy</subject><subject>Segregations</subject><subject>Temperature</subject><subject>Zinc oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS0EEkPhHSw2sMngvzj2BikahraopRIMtGJz5UkcyYMbT-0EMm9fh0FdsED1xvdef-fI9kEIU7Kkeb3bLWlZ0oJpKpeM5CkRvOLL6QlaPBw8RQtCCCsqxchz9CKlXW6pVmKBNpeuiSENcWyGMRqP179ca_vG4tDhM-M9vgxb591wwHXvUhhi2B-w63FT1JNLeGOnrLMtrn3xIexz8aO_eomedcYn--rvfoK-fVxvVmfFxdXp-aq-KJpSMF5YoSujVKcrMt_HStaqSnKRR7QUmpbbkm8pJ13DFG25EVsudGfbLDKUdJKfoDdH330Md6NNA9y61FjvTW_DmEAzyTmnkj6GZFrJUmTy7X9JKjXjhBPNM_r6H3QXxtjnF4NSkspKKpYhdYTmb07RdrCP7tbEA1ACc4KwgzkomIOCOUH4kyBMWfr-KP3tvD08Wgef6tV6LrNBcTRwabDTg4GJP0FWvCrh-vMpfFE331fi5hq-8ns4v637</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Kinemuchi, Yoshiaki</creator><creator>Nakano, Hiromi</creator><creator>Kaga, Hisashi</creator><creator>Tanaka, Satoshi</creator><creator>Uematsu, Keizo</creator><creator>Watari, Koji</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201108</creationdate><title>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</title><author>Kinemuchi, Yoshiaki ; Nakano, Hiromi ; Kaga, Hisashi ; Tanaka, Satoshi ; Uematsu, Keizo ; Watari, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5423-e497a88f9700001e62d8763488f154915b53b130fc281d3a4b349fed7a8a10f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum</topic><topic>Anisotropy</topic><topic>Ceramics</topic><topic>Conductivity</topic><topic>Dispersions</topic><topic>Grain boundaries</topic><topic>Halls</topic><topic>Microstructure</topic><topic>Resistivity</topic><topic>Scanning electron microscopy</topic><topic>Segregations</topic><topic>Temperature</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Nakano, Hiromi</creatorcontrib><creatorcontrib>Kaga, Hisashi</creatorcontrib><creatorcontrib>Tanaka, Satoshi</creatorcontrib><creatorcontrib>Uematsu, Keizo</creatorcontrib><creatorcontrib>Watari, Koji</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinemuchi, Yoshiaki</au><au>Nakano, Hiromi</au><au>Kaga, Hisashi</au><au>Tanaka, Satoshi</au><au>Uematsu, Keizo</au><au>Watari, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2011-08</date><risdate>2011</risdate><volume>94</volume><issue>8</issue><spage>2339</spage><epage>2343</epage><pages>2339-2343</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The high electrical conductivity, 1150 S/cm at room temperature, in the ab‐plane of c‐axis textured Al‐doped ZnO is attributed to its high Hall mobility that is almost double the mobility in the c‐axis direction. Temperature‐independent mobility in the ab‐plane below 200 K suggests that ionized impurity dominates the scattering of electron transport, which reasonably agrees with a modified Brooks–Herring–Dingle model taking into account nonparabolic E–k dispersion. However, the pronounced anisotropy between ab‐plane and c‐axis cannot be expected based on the model. Detailed observations of the grain boundary (GB) by means of high‐resolution transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy revealed the existence of an Al‐enriched, Zn‐deficient layer near the GB traversing the c‐axis direction. In contrast, the highly conductive direction encompasses a tilt grain boundary, in which coincident sites were observed and Al segregation was barely evident. We conclude that such a preferential segregation in the GB and/or GB structure itself are responsible for the anisotropy of mobility in the textured Al‐doped ZnO.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2010.04373.x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2339-2343
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_926333161
source Wiley Journals
subjects Aluminum
Anisotropy
Ceramics
Conductivity
Dispersions
Grain boundaries
Halls
Microstructure
Resistivity
Scanning electron microscopy
Segregations
Temperature
Zinc oxide
title Microstructural Evidence of Hall Mobility Anisotropy in c-Axis Textured Al-Doped ZnO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Evidence%20of%20Hall%20Mobility%20Anisotropy%20in%20c-Axis%20Textured%20Al-Doped%20ZnO&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Kinemuchi,%20Yoshiaki&rft.date=2011-08&rft.volume=94&rft.issue=8&rft.spage=2339&rft.epage=2343&rft.pages=2339-2343&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2010.04373.x&rft_dat=%3Cproquest_cross%3E1692303093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=886167682&rft_id=info:pmid/&rfr_iscdi=true