Solvation of Metal Cations in Non-aqueous Liquids

The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solution chemistry 2011-09, Vol.40 (8), p.1383-1398
Hauptverfasser: Ziegler, Michael J., Madura, Jeffry D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 8
container_start_page 1383
container_title Journal of solution chemistry
container_volume 40
creator Ziegler, Michael J.
Madura, Jeffry D.
description The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, then to investigate the role that the cation plays in the reaction. We have used the electronic structure techniques Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), and the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) to study the structure and properties of tetrahydrofuran (THF) and dimethyl ether (DME) solvation complexes with Li + , Na + , K + , Cu + , and MgCl + . The values calculated for DME complexes were compared with existing experimentally determined data. The B3LYP/6-31 + G ∗ model chemistry was found to be the most accurate and efficient method of modeling the cation–DME molecular system. The energetic trends observed in the DME results were also observed in the THF data. Based on the accuracy of the calculations and the computational cost of the calculations, B3LYP was found to be the most desirable method of modeling these types of systems.
doi_str_mv 10.1007/s10953-011-9732-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926331931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926331931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fb28c1fcd28f7cfad69d958a8332b00062464fc0f434f47bef3526f63ed791f53</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgfXyAu9mIq2jemSyl-IKqC3Ud0kwiKdOkTWYE_97UKS5dXS7ncc89AFxgdI0RkjcFI8UpRBhDJSmB6ADMMJcEtorIQzBDFa5IS47BSSkrVPdWsRnAb6n_MkNIsUm-eXaD6Zv5716aEJuXFKHZji6NpVmE7Ri6cgaOvOmLO9_PU_Bxf_c-f4SL14en-e0CWobFAP2StBZ725HWS-tNJ1SneGtaSsmynheECeYt8owyz-TSecqJ8IK6TirsOT0FV5PvJqeaoAx6HYp1fW_iLo5WRFCKFcWViSemzamU7Lze5LA2-VtjpHft6KkdXdvRu3Y0qprLvbsp1vQ-m2hD-RMSxquAi8ojE69UKH66rFdpzLE-_o_5D15Oc0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926331931</pqid></control><display><type>article</type><title>Solvation of Metal Cations in Non-aqueous Liquids</title><source>SpringerNature Journals</source><creator>Ziegler, Michael J. ; Madura, Jeffry D.</creator><creatorcontrib>Ziegler, Michael J. ; Madura, Jeffry D.</creatorcontrib><description>The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, then to investigate the role that the cation plays in the reaction. We have used the electronic structure techniques Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), and the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) to study the structure and properties of tetrahydrofuran (THF) and dimethyl ether (DME) solvation complexes with Li + , Na + , K + , Cu + , and MgCl + . The values calculated for DME complexes were compared with existing experimentally determined data. The B3LYP/6-31 + G ∗ model chemistry was found to be the most accurate and efficient method of modeling the cation–DME molecular system. The energetic trends observed in the DME results were also observed in the THF data. Based on the accuracy of the calculations and the computational cost of the calculations, B3LYP was found to be the most desirable method of modeling these types of systems.</description><identifier>ISSN: 0095-9782</identifier><identifier>EISSN: 1572-8927</identifier><identifier>DOI: 10.1007/s10953-011-9732-0</identifier><identifier>CODEN: JSLCAG</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Cations ; Chemistry ; Chemistry and Materials Science ; Computational efficiency ; Condensed Matter Physics ; Dimethyl ether ; Exact sciences and technology ; General and physical chemistry ; Geochemistry ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Liquids ; Mathematical models ; Oceanography ; Perturbation theory ; Physical Chemistry ; Solutions ; Solvation ; Solvents</subject><ispartof>Journal of solution chemistry, 2011-09, Vol.40 (8), p.1383-1398</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fb28c1fcd28f7cfad69d958a8332b00062464fc0f434f47bef3526f63ed791f53</citedby><cites>FETCH-LOGICAL-c416t-fb28c1fcd28f7cfad69d958a8332b00062464fc0f434f47bef3526f63ed791f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10953-011-9732-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10953-011-9732-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24595356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziegler, Michael J.</creatorcontrib><creatorcontrib>Madura, Jeffry D.</creatorcontrib><title>Solvation of Metal Cations in Non-aqueous Liquids</title><title>Journal of solution chemistry</title><addtitle>J Solution Chem</addtitle><description>The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, then to investigate the role that the cation plays in the reaction. We have used the electronic structure techniques Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), and the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) to study the structure and properties of tetrahydrofuran (THF) and dimethyl ether (DME) solvation complexes with Li + , Na + , K + , Cu + , and MgCl + . The values calculated for DME complexes were compared with existing experimentally determined data. The B3LYP/6-31 + G ∗ model chemistry was found to be the most accurate and efficient method of modeling the cation–DME molecular system. The energetic trends observed in the DME results were also observed in the THF data. Based on the accuracy of the calculations and the computational cost of the calculations, B3LYP was found to be the most desirable method of modeling these types of systems.</description><subject>Cations</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational efficiency</subject><subject>Condensed Matter Physics</subject><subject>Dimethyl ether</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Geochemistry</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Oceanography</subject><subject>Perturbation theory</subject><subject>Physical Chemistry</subject><subject>Solutions</subject><subject>Solvation</subject><subject>Solvents</subject><issn>0095-9782</issn><issn>1572-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgfXyAu9mIq2jemSyl-IKqC3Ud0kwiKdOkTWYE_97UKS5dXS7ncc89AFxgdI0RkjcFI8UpRBhDJSmB6ADMMJcEtorIQzBDFa5IS47BSSkrVPdWsRnAb6n_MkNIsUm-eXaD6Zv5716aEJuXFKHZji6NpVmE7Ri6cgaOvOmLO9_PU_Bxf_c-f4SL14en-e0CWobFAP2StBZ725HWS-tNJ1SneGtaSsmynheECeYt8owyz-TSecqJ8IK6TirsOT0FV5PvJqeaoAx6HYp1fW_iLo5WRFCKFcWViSemzamU7Lze5LA2-VtjpHft6KkdXdvRu3Y0qprLvbsp1vQ-m2hD-RMSxquAi8ojE69UKH66rFdpzLE-_o_5D15Oc0Q</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Ziegler, Michael J.</creator><creator>Madura, Jeffry D.</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Solvation of Metal Cations in Non-aqueous Liquids</title><author>Ziegler, Michael J. ; Madura, Jeffry D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fb28c1fcd28f7cfad69d958a8332b00062464fc0f434f47bef3526f63ed791f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cations</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational efficiency</topic><topic>Condensed Matter Physics</topic><topic>Dimethyl ether</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Geochemistry</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Oceanography</topic><topic>Perturbation theory</topic><topic>Physical Chemistry</topic><topic>Solutions</topic><topic>Solvation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziegler, Michael J.</creatorcontrib><creatorcontrib>Madura, Jeffry D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solution chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziegler, Michael J.</au><au>Madura, Jeffry D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvation of Metal Cations in Non-aqueous Liquids</atitle><jtitle>Journal of solution chemistry</jtitle><stitle>J Solution Chem</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>40</volume><issue>8</issue><spage>1383</spage><epage>1398</epage><pages>1383-1398</pages><issn>0095-9782</issn><eissn>1572-8927</eissn><coden>JSLCAG</coden><abstract>The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, then to investigate the role that the cation plays in the reaction. We have used the electronic structure techniques Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), and the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) to study the structure and properties of tetrahydrofuran (THF) and dimethyl ether (DME) solvation complexes with Li + , Na + , K + , Cu + , and MgCl + . The values calculated for DME complexes were compared with existing experimentally determined data. The B3LYP/6-31 + G ∗ model chemistry was found to be the most accurate and efficient method of modeling the cation–DME molecular system. The energetic trends observed in the DME results were also observed in the THF data. Based on the accuracy of the calculations and the computational cost of the calculations, B3LYP was found to be the most desirable method of modeling these types of systems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10953-011-9732-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-9782
ispartof Journal of solution chemistry, 2011-09, Vol.40 (8), p.1383-1398
issn 0095-9782
1572-8927
language eng
recordid cdi_proquest_miscellaneous_926331931
source SpringerNature Journals
subjects Cations
Chemistry
Chemistry and Materials Science
Computational efficiency
Condensed Matter Physics
Dimethyl ether
Exact sciences and technology
General and physical chemistry
Geochemistry
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Liquids
Mathematical models
Oceanography
Perturbation theory
Physical Chemistry
Solutions
Solvation
Solvents
title Solvation of Metal Cations in Non-aqueous Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvation%20of%20Metal%20Cations%20in%20Non-aqueous%20Liquids&rft.jtitle=Journal%20of%20solution%20chemistry&rft.au=Ziegler,%20Michael%20J.&rft.date=2011-09-01&rft.volume=40&rft.issue=8&rft.spage=1383&rft.epage=1398&rft.pages=1383-1398&rft.issn=0095-9782&rft.eissn=1572-8927&rft.coden=JSLCAG&rft_id=info:doi/10.1007/s10953-011-9732-0&rft_dat=%3Cproquest_cross%3E926331931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926331931&rft_id=info:pmid/&rfr_iscdi=true