Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles

Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorescence 2010, Vol.20 (1), p.67-72
Hauptverfasser: Herz, Erik, Marchincin, Thomas, Connelly, Laura, Bonner, Daniel, Burns, Andrew, Switalski, Steven, Wiesner, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 67
container_title Journal of fluorescence
container_volume 20
creator Herz, Erik
Marchincin, Thomas
Connelly, Laura
Bonner, Daniel
Burns, Andrew
Switalski, Steven
Wiesner, Ulrich
description Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.
doi_str_mv 10.1007/s10895-009-0523-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926327909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926327909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e77157d64cf071cbe6df5546c45dde71853caca9cce5ac8369bcf9307f5d58353</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6A7xIbp6qSdM0yVHK-gGroqsHTyGbTrVLv0wawX9vpAvePM0M87wvMy9Cp5RcUELEpadEKp4QohLCU5bke2hOuWBJplS2H3vCWdwQNUNH3m9JBGUmD9GMqlzKVMk50s_QmLH-AvwUTDeGFr_V0JT4HowPDlroRo_7Chd9aI2rO7zsrBl8iCIocZyL3kGy_oCmweu6qa3BD6brB-PG2jbgj9FBZRoPJ7u6QK_Xy5fiNlk93twVV6vEMsHHBISIh5d5ZisiqN1AXlacZ7nNeFmCoJIza6xR1gI3VrJcbWylGBEVL7lknC3Q-eQ7uP4zgB91W3sbrzId9MFrleYsFYqoSNKJtK733kGlB1fH3741Jfo3Vj3FqmNa-jdWnUfN2c49bFoo_xS7HCOQToCPq-4dnN72wXXx439cfwD4w4Qi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926327909</pqid></control><display><type>article</type><title>Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herz, Erik ; Marchincin, Thomas ; Connelly, Laura ; Bonner, Daniel ; Burns, Andrew ; Switalski, Steven ; Wiesner, Ulrich</creator><creatorcontrib>Herz, Erik ; Marchincin, Thomas ; Connelly, Laura ; Bonner, Daniel ; Burns, Andrew ; Switalski, Steven ; Wiesner, Ulrich</creatorcontrib><description>Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.</description><identifier>ISSN: 1053-0509</identifier><identifier>EISSN: 1573-4994</identifier><identifier>DOI: 10.1007/s10895-009-0523-6</identifier><identifier>PMID: 19688298</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Absorption ; Analytical Chemistry ; Arrays ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedicine ; Biophysics ; Biotechnology ; Brightness ; Coumarin ; Coumarins - chemistry ; Covalence ; Dyes ; Fluorescent Dyes - chemistry ; Light ; Matrices ; Nanoparticles ; Nanoparticles - chemistry ; Original Paper ; Scattering, Radiation ; Silicon dioxide ; Silicon Dioxide - chemistry ; Spectrometry, Fluorescence</subject><ispartof>Journal of fluorescence, 2010, Vol.20 (1), p.67-72</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e77157d64cf071cbe6df5546c45dde71853caca9cce5ac8369bcf9307f5d58353</citedby><cites>FETCH-LOGICAL-c375t-e77157d64cf071cbe6df5546c45dde71853caca9cce5ac8369bcf9307f5d58353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10895-009-0523-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10895-009-0523-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19688298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herz, Erik</creatorcontrib><creatorcontrib>Marchincin, Thomas</creatorcontrib><creatorcontrib>Connelly, Laura</creatorcontrib><creatorcontrib>Bonner, Daniel</creatorcontrib><creatorcontrib>Burns, Andrew</creatorcontrib><creatorcontrib>Switalski, Steven</creatorcontrib><creatorcontrib>Wiesner, Ulrich</creatorcontrib><title>Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles</title><title>Journal of fluorescence</title><addtitle>J Fluoresc</addtitle><addtitle>J Fluoresc</addtitle><description>Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.</description><subject>Absorption</subject><subject>Analytical Chemistry</subject><subject>Arrays</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Brightness</subject><subject>Coumarin</subject><subject>Coumarins - chemistry</subject><subject>Covalence</subject><subject>Dyes</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Light</subject><subject>Matrices</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Original Paper</subject><subject>Scattering, Radiation</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spectrometry, Fluorescence</subject><issn>1053-0509</issn><issn>1573-4994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6A7xIbp6qSdM0yVHK-gGroqsHTyGbTrVLv0wawX9vpAvePM0M87wvMy9Cp5RcUELEpadEKp4QohLCU5bke2hOuWBJplS2H3vCWdwQNUNH3m9JBGUmD9GMqlzKVMk50s_QmLH-AvwUTDeGFr_V0JT4HowPDlroRo_7Chd9aI2rO7zsrBl8iCIocZyL3kGy_oCmweu6qa3BD6brB-PG2jbgj9FBZRoPJ7u6QK_Xy5fiNlk93twVV6vEMsHHBISIh5d5ZisiqN1AXlacZ7nNeFmCoJIza6xR1gI3VrJcbWylGBEVL7lknC3Q-eQ7uP4zgB91W3sbrzId9MFrleYsFYqoSNKJtK733kGlB1fH3741Jfo3Vj3FqmNa-jdWnUfN2c49bFoo_xS7HCOQToCPq-4dnN72wXXx439cfwD4w4Qi</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Herz, Erik</creator><creator>Marchincin, Thomas</creator><creator>Connelly, Laura</creator><creator>Bonner, Daniel</creator><creator>Burns, Andrew</creator><creator>Switalski, Steven</creator><creator>Wiesner, Ulrich</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2010</creationdate><title>Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles</title><author>Herz, Erik ; Marchincin, Thomas ; Connelly, Laura ; Bonner, Daniel ; Burns, Andrew ; Switalski, Steven ; Wiesner, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e77157d64cf071cbe6df5546c45dde71853caca9cce5ac8369bcf9307f5d58353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Analytical Chemistry</topic><topic>Arrays</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Brightness</topic><topic>Coumarin</topic><topic>Coumarins - chemistry</topic><topic>Covalence</topic><topic>Dyes</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Light</topic><topic>Matrices</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Original Paper</topic><topic>Scattering, Radiation</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herz, Erik</creatorcontrib><creatorcontrib>Marchincin, Thomas</creatorcontrib><creatorcontrib>Connelly, Laura</creatorcontrib><creatorcontrib>Bonner, Daniel</creatorcontrib><creatorcontrib>Burns, Andrew</creatorcontrib><creatorcontrib>Switalski, Steven</creatorcontrib><creatorcontrib>Wiesner, Ulrich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluorescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herz, Erik</au><au>Marchincin, Thomas</au><au>Connelly, Laura</au><au>Bonner, Daniel</au><au>Burns, Andrew</au><au>Switalski, Steven</au><au>Wiesner, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles</atitle><jtitle>Journal of fluorescence</jtitle><stitle>J Fluoresc</stitle><addtitle>J Fluoresc</addtitle><date>2010</date><risdate>2010</risdate><volume>20</volume><issue>1</issue><spage>67</spage><epage>72</epage><pages>67-72</pages><issn>1053-0509</issn><eissn>1573-4994</eissn><abstract>Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>19688298</pmid><doi>10.1007/s10895-009-0523-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-0509
ispartof Journal of fluorescence, 2010, Vol.20 (1), p.67-72
issn 1053-0509
1573-4994
language eng
recordid cdi_proquest_miscellaneous_926327909
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Absorption
Analytical Chemistry
Arrays
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedicine
Biophysics
Biotechnology
Brightness
Coumarin
Coumarins - chemistry
Covalence
Dyes
Fluorescent Dyes - chemistry
Light
Matrices
Nanoparticles
Nanoparticles - chemistry
Original Paper
Scattering, Radiation
Silicon dioxide
Silicon Dioxide - chemistry
Spectrometry, Fluorescence
title Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Quantum%20Yield%20Measurements%20of%20Coumarin%20Encapsulated%20in%20Core-Shell%20Silica%20Nanoparticles&rft.jtitle=Journal%20of%20fluorescence&rft.au=Herz,%20Erik&rft.date=2010&rft.volume=20&rft.issue=1&rft.spage=67&rft.epage=72&rft.pages=67-72&rft.issn=1053-0509&rft.eissn=1573-4994&rft_id=info:doi/10.1007/s10895-009-0523-6&rft_dat=%3Cproquest_cross%3E926327909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926327909&rft_id=info:pmid/19688298&rfr_iscdi=true