Overview of transient liquid phase and partial transient liquid phase bonding
Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The resul...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2011-08, Vol.46 (16), p.5305-5323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5323 |
---|---|
container_issue | 16 |
container_start_page | 5305 |
container_title | Journal of materials science |
container_volume | 46 |
creator | Cook, Grant O. Sorensen, Carl D. |
description | Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented. |
doi_str_mv | 10.1007/s10853-011-5561-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_926326234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A411751140</galeid><sourcerecordid>A411751140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-397485d215cb58acfac8a854127c353de1e49a2ce519b4dfb0476ab7753063843</originalsourceid><addsrcrecordid>eNqNklFL3TAYhsNwsKPuB-yusAvZRd33Jfma9lLETcEhOHcd0jQ9i_Skx6R1-u-XQwXnQDZykRCe5-VLeBn7gHCMAOpzQqhJlIBYElVY4hu2QlKilDWIPbYC4LzkssJ3bD-lWwAgxXHFvl3du3jv3a9i7IspmpC8C1Mx-LvZd8X2p0muMCGfTJy8GV5D2jF0PqwP2dveDMm9f9oP2I8vZzen5-Xl1deL05PL0lYgplI0StbUcSTbUm1sb2xtapLIlRUkOodONoZbR9i0sutbkKoyrVIkoBK1FAfsaMndxvFudmnSG5-sGwYT3Dgn3fBK8IqLHfnxL_J2nGPIw2nOqVHIK6JMHS_U2gxO-9CP-Z02r85tvB2D632-PyEF0BBK_F9BIipClJCFTy-EzEzuYVqbOSV98f36Zfi_2D9zcWFtHFOKrtfb6DcmPmoEvWuGXpqhczP0rhl6l88XJ2U2rF18_pPXpd94CbeN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259712655</pqid></control><display><type>article</type><title>Overview of transient liquid phase and partial transient liquid phase bonding</title><source>SpringerLink Journals</source><creator>Cook, Grant O. ; Sorensen, Carl D.</creator><creatorcontrib>Cook, Grant O. ; Sorensen, Carl D.</creatorcontrib><description>Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-011-5561-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloying elements ; Alloys ; Bonding ; Bonds ; Ceramic bonding ; Characterization and Evaluation of Materials ; Classical Mechanics ; Crystallography and Scattering Methods ; Format ; Heating ; Innovations ; Interlayers ; Liquid phases ; Materials Science ; Melting points ; Melts ; Metallurgical constituents ; Nickel ; Nickel base alloys ; Polymer Sciences ; Refractory materials ; Review ; Solid Mechanics ; Solidification ; Substrates ; Superalloys ; Thin films ; Transient liquid phase bonding</subject><ispartof>Journal of materials science, 2011-08, Vol.46 (16), p.5305-5323</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer Science+Business Media, LLC 2011. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-397485d215cb58acfac8a854127c353de1e49a2ce519b4dfb0476ab7753063843</citedby><cites>FETCH-LOGICAL-c603t-397485d215cb58acfac8a854127c353de1e49a2ce519b4dfb0476ab7753063843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-011-5561-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-011-5561-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cook, Grant O.</creatorcontrib><creatorcontrib>Sorensen, Carl D.</creatorcontrib><title>Overview of transient liquid phase and partial transient liquid phase bonding</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Bonding</subject><subject>Bonds</subject><subject>Ceramic bonding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Format</subject><subject>Heating</subject><subject>Innovations</subject><subject>Interlayers</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Melting points</subject><subject>Melts</subject><subject>Metallurgical constituents</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Polymer Sciences</subject><subject>Refractory materials</subject><subject>Review</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Superalloys</subject><subject>Thin films</subject><subject>Transient liquid phase bonding</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqNklFL3TAYhsNwsKPuB-yusAvZRd33Jfma9lLETcEhOHcd0jQ9i_Skx6R1-u-XQwXnQDZykRCe5-VLeBn7gHCMAOpzQqhJlIBYElVY4hu2QlKilDWIPbYC4LzkssJ3bD-lWwAgxXHFvl3du3jv3a9i7IspmpC8C1Mx-LvZd8X2p0muMCGfTJy8GV5D2jF0PqwP2dveDMm9f9oP2I8vZzen5-Xl1deL05PL0lYgplI0StbUcSTbUm1sb2xtapLIlRUkOodONoZbR9i0sutbkKoyrVIkoBK1FAfsaMndxvFudmnSG5-sGwYT3Dgn3fBK8IqLHfnxL_J2nGPIw2nOqVHIK6JMHS_U2gxO-9CP-Z02r85tvB2D632-PyEF0BBK_F9BIipClJCFTy-EzEzuYVqbOSV98f36Zfi_2D9zcWFtHFOKrtfb6DcmPmoEvWuGXpqhczP0rhl6l88XJ2U2rF18_pPXpd94CbeN</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Cook, Grant O.</creator><creator>Sorensen, Carl D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110801</creationdate><title>Overview of transient liquid phase and partial transient liquid phase bonding</title><author>Cook, Grant O. ; Sorensen, Carl D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-397485d215cb58acfac8a854127c353de1e49a2ce519b4dfb0476ab7753063843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Bonding</topic><topic>Bonds</topic><topic>Ceramic bonding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Format</topic><topic>Heating</topic><topic>Innovations</topic><topic>Interlayers</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Melting points</topic><topic>Melts</topic><topic>Metallurgical constituents</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Polymer Sciences</topic><topic>Refractory materials</topic><topic>Review</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Superalloys</topic><topic>Thin films</topic><topic>Transient liquid phase bonding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Grant O.</creatorcontrib><creatorcontrib>Sorensen, Carl D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Grant O.</au><au>Sorensen, Carl D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of transient liquid phase and partial transient liquid phase bonding</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>46</volume><issue>16</issue><spage>5305</spage><epage>5323</epage><pages>5305-5323</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-011-5561-1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2011-08, Vol.46 (16), p.5305-5323 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_926326234 |
source | SpringerLink Journals |
subjects | Alloying elements Alloys Bonding Bonds Ceramic bonding Characterization and Evaluation of Materials Classical Mechanics Crystallography and Scattering Methods Format Heating Innovations Interlayers Liquid phases Materials Science Melting points Melts Metallurgical constituents Nickel Nickel base alloys Polymer Sciences Refractory materials Review Solid Mechanics Solidification Substrates Superalloys Thin films Transient liquid phase bonding |
title | Overview of transient liquid phase and partial transient liquid phase bonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20transient%20liquid%20phase%20and%20partial%20transient%20liquid%20phase%20bonding&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cook,%20Grant%20O.&rft.date=2011-08-01&rft.volume=46&rft.issue=16&rft.spage=5305&rft.epage=5323&rft.pages=5305-5323&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-011-5561-1&rft_dat=%3Cgale_proqu%3EA411751140%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259712655&rft_id=info:pmid/&rft_galeid=A411751140&rfr_iscdi=true |