Fracture behavior of Cu-cored solder joints

Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2011-11, Vol.46 (21), p.6897-6903
Hauptverfasser: Kim, Yunsung, Choi, Hyelim, Lee, Hyoungjoo, Shin, Dongjun, Moon, Jeongtak, Choe, Heeman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6903
container_issue 21
container_start_page 6897
container_title Journal of materials science
container_volume 46
creator Kim, Yunsung
Choi, Hyelim
Lee, Hyoungjoo
Shin, Dongjun
Moon, Jeongtak
Choe, Heeman
description Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.
doi_str_mv 10.1007/s10853-011-5654-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_926323661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568889234</galeid><sourcerecordid>A568889234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ac9b2db97747096df88c924eef67a67becdb1f3a26ef14921bee3b0ad7232f203</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoNYcG39Ad4NeCEiqcnJ1-SyLFYLBcHW65DJnKyzzE5qMlPWf2_KCFpBlFwcCM_zcpKXkJecnXPGzLvCWasEZZxTpZWkxydkw5URVLZMPCUbxgAoSM2fkeel7BljygDfkLeX2Yd5ydh0-NXfDyk3KTbbhYaUsW9KGnvMzT4N01zOyEn0Y8EXP-cp-XL5_nb7kV5_-nC1vbimQVo5Ux9sB31njZGGWd3Htg0WJGLUxmvTYeg7HoUHjZFLC7xDFB3zvQEBEZg4Ja_X3Lucvi1YZncYSsBx9BOmpTgLWoDQmlfy1R_kPi15qss5AGWNEKq1lTpfqZ0f0Q1TTHN9dD09HoaQJoxDvb9Qum1bC0L-ryA5SM6FVFV480iozIzHeeeXUtzVzefH4f9if8_lKxtyKiVjdHd5OPj83XHmHnp3a--u9u4eenfH6sDqlMpOO8y__uTv0g-rnaxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259733589</pqid></control><display><type>article</type><title>Fracture behavior of Cu-cored solder joints</title><source>SpringerLink Journals</source><creator>Kim, Yunsung ; Choi, Hyelim ; Lee, Hyoungjoo ; Shin, Dongjun ; Moon, Jeongtak ; Choe, Heeman</creator><creatorcontrib>Kim, Yunsung ; Choi, Hyelim ; Lee, Hyoungjoo ; Shin, Dongjun ; Moon, Jeongtak ; Choe, Heeman</creatorcontrib><description>Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-011-5654-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; Crystallography and Scattering Methods ; Failure modes ; Fracture mechanics ; Fracture strength ; Materials Science ; Microelectronics ; Plating ; Polymer Sciences ; Semiconductors ; Shear tests ; Soldered joints ; Solders ; Solid Mechanics ; Tin ; Tin base alloys ; Transportation applications ; Transportation systems ; Wettability</subject><ispartof>Journal of materials science, 2011-11, Vol.46 (21), p.6897-6903</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ac9b2db97747096df88c924eef67a67becdb1f3a26ef14921bee3b0ad7232f203</citedby><cites>FETCH-LOGICAL-c494t-ac9b2db97747096df88c924eef67a67becdb1f3a26ef14921bee3b0ad7232f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-011-5654-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-011-5654-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Yunsung</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Lee, Hyoungjoo</creatorcontrib><creatorcontrib>Shin, Dongjun</creatorcontrib><creatorcontrib>Moon, Jeongtak</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><title>Fracture behavior of Cu-cored solder joints</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>Crystallography and Scattering Methods</subject><subject>Failure modes</subject><subject>Fracture mechanics</subject><subject>Fracture strength</subject><subject>Materials Science</subject><subject>Microelectronics</subject><subject>Plating</subject><subject>Polymer Sciences</subject><subject>Semiconductors</subject><subject>Shear tests</subject><subject>Soldered joints</subject><subject>Solders</subject><subject>Solid Mechanics</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Transportation applications</subject><subject>Transportation systems</subject><subject>Wettability</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhoNYcG39Ad4NeCEiqcnJ1-SyLFYLBcHW65DJnKyzzE5qMlPWf2_KCFpBlFwcCM_zcpKXkJecnXPGzLvCWasEZZxTpZWkxydkw5URVLZMPCUbxgAoSM2fkeel7BljygDfkLeX2Yd5ydh0-NXfDyk3KTbbhYaUsW9KGnvMzT4N01zOyEn0Y8EXP-cp-XL5_nb7kV5_-nC1vbimQVo5Ux9sB31njZGGWd3Htg0WJGLUxmvTYeg7HoUHjZFLC7xDFB3zvQEBEZg4Ja_X3Lucvi1YZncYSsBx9BOmpTgLWoDQmlfy1R_kPi15qss5AGWNEKq1lTpfqZ0f0Q1TTHN9dD09HoaQJoxDvb9Qum1bC0L-ryA5SM6FVFV480iozIzHeeeXUtzVzefH4f9if8_lKxtyKiVjdHd5OPj83XHmHnp3a--u9u4eenfH6sDqlMpOO8y__uTv0g-rnaxs</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Kim, Yunsung</creator><creator>Choi, Hyelim</creator><creator>Lee, Hyoungjoo</creator><creator>Shin, Dongjun</creator><creator>Moon, Jeongtak</creator><creator>Choe, Heeman</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111101</creationdate><title>Fracture behavior of Cu-cored solder joints</title><author>Kim, Yunsung ; Choi, Hyelim ; Lee, Hyoungjoo ; Shin, Dongjun ; Moon, Jeongtak ; Choe, Heeman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ac9b2db97747096df88c924eef67a67becdb1f3a26ef14921bee3b0ad7232f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>Crystallography and Scattering Methods</topic><topic>Failure modes</topic><topic>Fracture mechanics</topic><topic>Fracture strength</topic><topic>Materials Science</topic><topic>Microelectronics</topic><topic>Plating</topic><topic>Polymer Sciences</topic><topic>Semiconductors</topic><topic>Shear tests</topic><topic>Soldered joints</topic><topic>Solders</topic><topic>Solid Mechanics</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Transportation applications</topic><topic>Transportation systems</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yunsung</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Lee, Hyoungjoo</creatorcontrib><creatorcontrib>Shin, Dongjun</creatorcontrib><creatorcontrib>Moon, Jeongtak</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yunsung</au><au>Choi, Hyelim</au><au>Lee, Hyoungjoo</au><au>Shin, Dongjun</au><au>Moon, Jeongtak</au><au>Choe, Heeman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture behavior of Cu-cored solder joints</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>46</volume><issue>21</issue><spage>6897</spage><epage>6903</epage><pages>6897-6903</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-011-5654-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2011-11, Vol.46 (21), p.6897-6903
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_926323661
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Copper
Crystallography and Scattering Methods
Failure modes
Fracture mechanics
Fracture strength
Materials Science
Microelectronics
Plating
Polymer Sciences
Semiconductors
Shear tests
Soldered joints
Solders
Solid Mechanics
Tin
Tin base alloys
Transportation applications
Transportation systems
Wettability
title Fracture behavior of Cu-cored solder joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20behavior%20of%20Cu-cored%20solder%20joints&rft.jtitle=Journal%20of%20materials%20science&rft.au=Kim,%20Yunsung&rft.date=2011-11-01&rft.volume=46&rft.issue=21&rft.spage=6897&rft.epage=6903&rft.pages=6897-6903&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-011-5654-x&rft_dat=%3Cgale_proqu%3EA568889234%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259733589&rft_id=info:pmid/&rft_galeid=A568889234&rfr_iscdi=true