A survey of genetic algorithm-based face recognition

Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2011-09, Vol.16 (2), p.271-274
Hauptverfasser: Dai, Fengzhi, Kushida, Naoki, Shang, Liqiang, Sugisaka, Masanori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 2
container_start_page 271
container_title Artificial life and robotics
container_volume 16
creator Dai, Fengzhi
Kushida, Naoki
Shang, Liqiang
Sugisaka, Masanori
description Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates ( x , y ) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.
doi_str_mv 10.1007/s10015-011-0941-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926323037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926323037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyMRl8_mzGquJLqsQCs-W455AqjYudIPXfYxRmlrsbnvd09xByC-weGDMPuVRQlAFQVkug9RlZgAZJjVT6vMxSCKp4vbokVznvGZOGabEgcl3lKX3jqYqhanHAsfOV69uYuvHzQBuXcVcF57FK6GM7dGMXh2tyEVyf8eavL8nH0-P75oVu355fN-st9VyomvKAZgXBe46SKecNk6oBjcHwRipwWjU7B9goriXWILTx5S7tdMFh5YVYkrt57zHFrwnzaA9d9tj3bsA4ZVtzLbhgwhQSZtKnmHPCYI-pO7h0ssDsryA7C7JFkP0VZOuS4XMmF3ZoMdl9nNJQHvon9AMhzWbz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926323037</pqid></control><display><type>article</type><title>A survey of genetic algorithm-based face recognition</title><source>Springer Nature - Complete Springer Journals</source><creator>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</creator><creatorcontrib>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</creatorcontrib><description>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates ( x , y ) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-011-0941-9</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Algorithms ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Face recognition ; Genetic algorithms ; Genetics ; Mechatronics ; Neural networks ; Object recognition ; Original Article ; Recognition ; Robotics</subject><ispartof>Artificial life and robotics, 2011-09, Vol.16 (2), p.271-274</ispartof><rights>International Symposium on Artificial Life and Robotics (ISAROB). 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</citedby><cites>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-011-0941-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-011-0941-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dai, Fengzhi</creatorcontrib><creatorcontrib>Kushida, Naoki</creatorcontrib><creatorcontrib>Shang, Liqiang</creatorcontrib><creatorcontrib>Sugisaka, Masanori</creatorcontrib><title>A survey of genetic algorithm-based face recognition</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates ( x , y ) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Face recognition</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Recognition</subject><subject>Robotics</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyMRl8_mzGquJLqsQCs-W455AqjYudIPXfYxRmlrsbnvd09xByC-weGDMPuVRQlAFQVkug9RlZgAZJjVT6vMxSCKp4vbokVznvGZOGabEgcl3lKX3jqYqhanHAsfOV69uYuvHzQBuXcVcF57FK6GM7dGMXh2tyEVyf8eavL8nH0-P75oVu355fN-st9VyomvKAZgXBe46SKecNk6oBjcHwRipwWjU7B9goriXWILTx5S7tdMFh5YVYkrt57zHFrwnzaA9d9tj3bsA4ZVtzLbhgwhQSZtKnmHPCYI-pO7h0ssDsryA7C7JFkP0VZOuS4XMmF3ZoMdl9nNJQHvon9AMhzWbz</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Dai, Fengzhi</creator><creator>Kushida, Naoki</creator><creator>Shang, Liqiang</creator><creator>Sugisaka, Masanori</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201109</creationdate><title>A survey of genetic algorithm-based face recognition</title><author>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Face recognition</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Recognition</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Fengzhi</creatorcontrib><creatorcontrib>Kushida, Naoki</creatorcontrib><creatorcontrib>Shang, Liqiang</creatorcontrib><creatorcontrib>Sugisaka, Masanori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Fengzhi</au><au>Kushida, Naoki</au><au>Shang, Liqiang</au><au>Sugisaka, Masanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey of genetic algorithm-based face recognition</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2011-09</date><risdate>2011</risdate><volume>16</volume><issue>2</issue><spage>271</spage><epage>274</epage><pages>271-274</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates ( x , y ) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10015-011-0941-9</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2011-09, Vol.16 (2), p.271-274
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_miscellaneous_926323037
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Computation by Abstract Devices
Computer Science
Control
Face recognition
Genetic algorithms
Genetics
Mechatronics
Neural networks
Object recognition
Original Article
Recognition
Robotics
title A survey of genetic algorithm-based face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20of%20genetic%20algorithm-based%20face%20recognition&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Dai,%20Fengzhi&rft.date=2011-09&rft.volume=16&rft.issue=2&rft.spage=271&rft.epage=274&rft.pages=271-274&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-011-0941-9&rft_dat=%3Cproquest_cross%3E926323037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926323037&rft_id=info:pmid/&rfr_iscdi=true