A survey of genetic algorithm-based face recognition
Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-b...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2011-09, Vol.16 (2), p.271-274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Artificial life and robotics |
container_volume | 16 |
creator | Dai, Fengzhi Kushida, Naoki Shang, Liqiang Sugisaka, Masanori |
description | Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates (
x
,
y
) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA. |
doi_str_mv | 10.1007/s10015-011-0941-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926323037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926323037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyMRl8_mzGquJLqsQCs-W455AqjYudIPXfYxRmlrsbnvd09xByC-weGDMPuVRQlAFQVkug9RlZgAZJjVT6vMxSCKp4vbokVznvGZOGabEgcl3lKX3jqYqhanHAsfOV69uYuvHzQBuXcVcF57FK6GM7dGMXh2tyEVyf8eavL8nH0-P75oVu355fN-st9VyomvKAZgXBe46SKecNk6oBjcHwRipwWjU7B9goriXWILTx5S7tdMFh5YVYkrt57zHFrwnzaA9d9tj3bsA4ZVtzLbhgwhQSZtKnmHPCYI-pO7h0ssDsryA7C7JFkP0VZOuS4XMmF3ZoMdl9nNJQHvon9AMhzWbz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926323037</pqid></control><display><type>article</type><title>A survey of genetic algorithm-based face recognition</title><source>Springer Nature - Complete Springer Journals</source><creator>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</creator><creatorcontrib>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</creatorcontrib><description>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates (
x
,
y
) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-011-0941-9</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Algorithms ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Face recognition ; Genetic algorithms ; Genetics ; Mechatronics ; Neural networks ; Object recognition ; Original Article ; Recognition ; Robotics</subject><ispartof>Artificial life and robotics, 2011-09, Vol.16 (2), p.271-274</ispartof><rights>International Symposium on Artificial Life and Robotics (ISAROB). 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</citedby><cites>FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-011-0941-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-011-0941-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dai, Fengzhi</creatorcontrib><creatorcontrib>Kushida, Naoki</creatorcontrib><creatorcontrib>Shang, Liqiang</creatorcontrib><creatorcontrib>Sugisaka, Masanori</creatorcontrib><title>A survey of genetic algorithm-based face recognition</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates (
x
,
y
) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Face recognition</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Recognition</subject><subject>Robotics</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyMRl8_mzGquJLqsQCs-W455AqjYudIPXfYxRmlrsbnvd09xByC-weGDMPuVRQlAFQVkug9RlZgAZJjVT6vMxSCKp4vbokVznvGZOGabEgcl3lKX3jqYqhanHAsfOV69uYuvHzQBuXcVcF57FK6GM7dGMXh2tyEVyf8eavL8nH0-P75oVu355fN-st9VyomvKAZgXBe46SKecNk6oBjcHwRipwWjU7B9goriXWILTx5S7tdMFh5YVYkrt57zHFrwnzaA9d9tj3bsA4ZVtzLbhgwhQSZtKnmHPCYI-pO7h0ssDsryA7C7JFkP0VZOuS4XMmF3ZoMdl9nNJQHvon9AMhzWbz</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Dai, Fengzhi</creator><creator>Kushida, Naoki</creator><creator>Shang, Liqiang</creator><creator>Sugisaka, Masanori</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201109</creationdate><title>A survey of genetic algorithm-based face recognition</title><author>Dai, Fengzhi ; Kushida, Naoki ; Shang, Liqiang ; Sugisaka, Masanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2359-2fe781fcc2e405ac7045b16ef72b451a65bda1eb5264e91367c0046a6e4018c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Face recognition</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Recognition</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Fengzhi</creatorcontrib><creatorcontrib>Kushida, Naoki</creatorcontrib><creatorcontrib>Shang, Liqiang</creatorcontrib><creatorcontrib>Sugisaka, Masanori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Fengzhi</au><au>Kushida, Naoki</au><au>Shang, Liqiang</au><au>Sugisaka, Masanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey of genetic algorithm-based face recognition</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2011-09</date><risdate>2011</risdate><volume>16</volume><issue>2</issue><spage>271</spage><epage>274</epage><pages>271-274</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Traditionally, special objects can be detected and recognized by the template matching method, but the recognition speed has always been a problem. In addition, for recognition by a neural network, training the data is always time-consuming. In this article, the current method of genetic algorithm-based face recognition is summarized, and experiments for real-time use are described. The chromosomes generated by the genetic algorithm (GA) contain information (parameters) about the face, and genetic operators are used to detect and obtain the position of the face of interest in an image. Here, the parameters of the coordinates (
x
,
y
) of the center of the face, the rate of scale, and the angle of rotation θ, are encoded into the GA.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10015-011-0941-9</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2011-09, Vol.16 (2), p.271-274 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_miscellaneous_926323037 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial Intelligence Computation by Abstract Devices Computer Science Control Face recognition Genetic algorithms Genetics Mechatronics Neural networks Object recognition Original Article Recognition Robotics |
title | A survey of genetic algorithm-based face recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20of%20genetic%20algorithm-based%20face%20recognition&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Dai,%20Fengzhi&rft.date=2011-09&rft.volume=16&rft.issue=2&rft.spage=271&rft.epage=274&rft.pages=271-274&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-011-0941-9&rft_dat=%3Cproquest_cross%3E926323037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926323037&rft_id=info:pmid/&rfr_iscdi=true |