Bivariate Zero-Inflated Power Series Distribution

Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics (Irvine, Calif.) Calif.), 2011-07, Vol.2 (7), p.824-829
Hauptverfasser: Krishna, Patil Maruti, Tukaram, Shirke Digambar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 7
container_start_page 824
container_title Applied mathematics (Irvine, Calif.)
container_volume 2
creator Krishna, Patil Maruti
Tukaram, Shirke Digambar
description Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.
doi_str_mv 10.4236/am.2011.27110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926322641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926322641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouKx79N6bp9bJpEnao65fCwsK6sVLSNsJRPqxJq3iv7friu9l3oFn5vAwds4hy1GoS9tlCJxnqDmHI7ZALjHVohTH_72Qp2wV4zvMkQClzheMX_tPG7wdKXmjMKSb3rXz0iRPwxeF5JmCp5jc-DgGX02jH_ozduJsG2n1N5fs9e72Zf2Qbh_vN-urbVpzKSAtdOPQkkMllZVKE9ZC15WDXGJRcFdp4AQVYtEQSXAKkIpSONnM9zU0YskuDn93YfiYKI6m87GmtrU9DVM0JSqBqHI-k-mBrMMQYyBndsF3NnwbDmYvx9jO7OWYXzniB-4SVdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926322641</pqid></control><display><type>article</type><title>Bivariate Zero-Inflated Power Series Distribution</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</creator><creatorcontrib>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</creatorcontrib><description>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</description><identifier>ISSN: 2152-7385</identifier><identifier>EISSN: 2152-7393</identifier><identifier>DOI: 10.4236/am.2011.27110</identifier><language>eng</language><subject>Counting ; Defects ; Inference ; Inflation ; Mathematical models ; Poisson distributions ; Power series</subject><ispartof>Applied mathematics (Irvine, Calif.), 2011-07, Vol.2 (7), p.824-829</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</citedby><cites>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Krishna, Patil Maruti</creatorcontrib><creatorcontrib>Tukaram, Shirke Digambar</creatorcontrib><title>Bivariate Zero-Inflated Power Series Distribution</title><title>Applied mathematics (Irvine, Calif.)</title><description>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</description><subject>Counting</subject><subject>Defects</subject><subject>Inference</subject><subject>Inflation</subject><subject>Mathematical models</subject><subject>Poisson distributions</subject><subject>Power series</subject><issn>2152-7385</issn><issn>2152-7393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouKx79N6bp9bJpEnao65fCwsK6sVLSNsJRPqxJq3iv7friu9l3oFn5vAwds4hy1GoS9tlCJxnqDmHI7ZALjHVohTH_72Qp2wV4zvMkQClzheMX_tPG7wdKXmjMKSb3rXz0iRPwxeF5JmCp5jc-DgGX02jH_ozduJsG2n1N5fs9e72Zf2Qbh_vN-urbVpzKSAtdOPQkkMllZVKE9ZC15WDXGJRcFdp4AQVYtEQSXAKkIpSONnM9zU0YskuDn93YfiYKI6m87GmtrU9DVM0JSqBqHI-k-mBrMMQYyBndsF3NnwbDmYvx9jO7OWYXzniB-4SVdo</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Krishna, Patil Maruti</creator><creator>Tukaram, Shirke Digambar</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Bivariate Zero-Inflated Power Series Distribution</title><author>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Counting</topic><topic>Defects</topic><topic>Inference</topic><topic>Inflation</topic><topic>Mathematical models</topic><topic>Poisson distributions</topic><topic>Power series</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishna, Patil Maruti</creatorcontrib><creatorcontrib>Tukaram, Shirke Digambar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics (Irvine, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna, Patil Maruti</au><au>Tukaram, Shirke Digambar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Zero-Inflated Power Series Distribution</atitle><jtitle>Applied mathematics (Irvine, Calif.)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>2</volume><issue>7</issue><spage>824</spage><epage>829</epage><pages>824-829</pages><issn>2152-7385</issn><eissn>2152-7393</eissn><abstract>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</abstract><doi>10.4236/am.2011.27110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2152-7385
ispartof Applied mathematics (Irvine, Calif.), 2011-07, Vol.2 (7), p.824-829
issn 2152-7385
2152-7393
language eng
recordid cdi_proquest_miscellaneous_926322641
source EZB-FREE-00999 freely available EZB journals
subjects Counting
Defects
Inference
Inflation
Mathematical models
Poisson distributions
Power series
title Bivariate Zero-Inflated Power Series Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Zero-Inflated%20Power%20Series%20Distribution&rft.jtitle=Applied%20mathematics%20(Irvine,%20Calif.)&rft.au=Krishna,%20Patil%20Maruti&rft.date=2011-07-01&rft.volume=2&rft.issue=7&rft.spage=824&rft.epage=829&rft.pages=824-829&rft.issn=2152-7385&rft.eissn=2152-7393&rft_id=info:doi/10.4236/am.2011.27110&rft_dat=%3Cproquest_cross%3E926322641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926322641&rft_id=info:pmid/&rfr_iscdi=true