Bivariate Zero-Inflated Power Series Distribution
Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be...
Gespeichert in:
Veröffentlicht in: | Applied mathematics (Irvine, Calif.) Calif.), 2011-07, Vol.2 (7), p.824-829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 7 |
container_start_page | 824 |
container_title | Applied mathematics (Irvine, Calif.) |
container_volume | 2 |
creator | Krishna, Patil Maruti Tukaram, Shirke Digambar |
description | Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed. |
doi_str_mv | 10.4236/am.2011.27110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926322641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926322641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouKx79N6bp9bJpEnao65fCwsK6sVLSNsJRPqxJq3iv7friu9l3oFn5vAwds4hy1GoS9tlCJxnqDmHI7ZALjHVohTH_72Qp2wV4zvMkQClzheMX_tPG7wdKXmjMKSb3rXz0iRPwxeF5JmCp5jc-DgGX02jH_ozduJsG2n1N5fs9e72Zf2Qbh_vN-urbVpzKSAtdOPQkkMllZVKE9ZC15WDXGJRcFdp4AQVYtEQSXAKkIpSONnM9zU0YskuDn93YfiYKI6m87GmtrU9DVM0JSqBqHI-k-mBrMMQYyBndsF3NnwbDmYvx9jO7OWYXzniB-4SVdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926322641</pqid></control><display><type>article</type><title>Bivariate Zero-Inflated Power Series Distribution</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</creator><creatorcontrib>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</creatorcontrib><description>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</description><identifier>ISSN: 2152-7385</identifier><identifier>EISSN: 2152-7393</identifier><identifier>DOI: 10.4236/am.2011.27110</identifier><language>eng</language><subject>Counting ; Defects ; Inference ; Inflation ; Mathematical models ; Poisson distributions ; Power series</subject><ispartof>Applied mathematics (Irvine, Calif.), 2011-07, Vol.2 (7), p.824-829</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</citedby><cites>FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Krishna, Patil Maruti</creatorcontrib><creatorcontrib>Tukaram, Shirke Digambar</creatorcontrib><title>Bivariate Zero-Inflated Power Series Distribution</title><title>Applied mathematics (Irvine, Calif.)</title><description>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</description><subject>Counting</subject><subject>Defects</subject><subject>Inference</subject><subject>Inflation</subject><subject>Mathematical models</subject><subject>Poisson distributions</subject><subject>Power series</subject><issn>2152-7385</issn><issn>2152-7393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouKx79N6bp9bJpEnao65fCwsK6sVLSNsJRPqxJq3iv7friu9l3oFn5vAwds4hy1GoS9tlCJxnqDmHI7ZALjHVohTH_72Qp2wV4zvMkQClzheMX_tPG7wdKXmjMKSb3rXz0iRPwxeF5JmCp5jc-DgGX02jH_ozduJsG2n1N5fs9e72Zf2Qbh_vN-urbVpzKSAtdOPQkkMllZVKE9ZC15WDXGJRcFdp4AQVYtEQSXAKkIpSONnM9zU0YskuDn93YfiYKI6m87GmtrU9DVM0JSqBqHI-k-mBrMMQYyBndsF3NnwbDmYvx9jO7OWYXzniB-4SVdo</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Krishna, Patil Maruti</creator><creator>Tukaram, Shirke Digambar</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Bivariate Zero-Inflated Power Series Distribution</title><author>Krishna, Patil Maruti ; Tukaram, Shirke Digambar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1530-87df2aef2656a567e2c37cbf0452881fb701e0b228dee50f602e893f5dc15c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Counting</topic><topic>Defects</topic><topic>Inference</topic><topic>Inflation</topic><topic>Mathematical models</topic><topic>Poisson distributions</topic><topic>Power series</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishna, Patil Maruti</creatorcontrib><creatorcontrib>Tukaram, Shirke Digambar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics (Irvine, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna, Patil Maruti</au><au>Tukaram, Shirke Digambar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Zero-Inflated Power Series Distribution</atitle><jtitle>Applied mathematics (Irvine, Calif.)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>2</volume><issue>7</issue><spage>824</spage><epage>829</epage><pages>824-829</pages><issn>2152-7385</issn><eissn>2152-7393</eissn><abstract>Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.</abstract><doi>10.4236/am.2011.27110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-7385 |
ispartof | Applied mathematics (Irvine, Calif.), 2011-07, Vol.2 (7), p.824-829 |
issn | 2152-7385 2152-7393 |
language | eng |
recordid | cdi_proquest_miscellaneous_926322641 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Counting Defects Inference Inflation Mathematical models Poisson distributions Power series |
title | Bivariate Zero-Inflated Power Series Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Zero-Inflated%20Power%20Series%20Distribution&rft.jtitle=Applied%20mathematics%20(Irvine,%20Calif.)&rft.au=Krishna,%20Patil%20Maruti&rft.date=2011-07-01&rft.volume=2&rft.issue=7&rft.spage=824&rft.epage=829&rft.pages=824-829&rft.issn=2152-7385&rft.eissn=2152-7393&rft_id=info:doi/10.4236/am.2011.27110&rft_dat=%3Cproquest_cross%3E926322641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926322641&rft_id=info:pmid/&rfr_iscdi=true |