A nonholonomic control method for stabilizing an X4-AUV

A nonholonomic control method is considered for stabilizing all attitudes and positions ( x , y , or z ) of an underactuated X4 autonomous underwater vehicle (AUV) with four thrusters and six degrees of freedom (DOF), in which the positions are stabilized according to the Lyapunov stability theory....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2011-09, Vol.16 (2), p.202-207
Hauptverfasser: Zain, Zainah Md, Watanabe, Keigo, Izumi, Kiyotaka, Nagai, Isaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 202
container_title Artificial life and robotics
container_volume 16
creator Zain, Zainah Md
Watanabe, Keigo
Izumi, Kiyotaka
Nagai, Isaku
description A nonholonomic control method is considered for stabilizing all attitudes and positions ( x , y , or z ) of an underactuated X4 autonomous underwater vehicle (AUV) with four thrusters and six degrees of freedom (DOF), in which the positions are stabilized according to the Lyapunov stability theory. A dynamic model is first derived, and then a sequential nonlinear control strategy is implemented for the X4-AUV which is composed of translational and rotational subsystems. A controller for the translational subsystem stabilizes one position out of the x -, y -, and z -coordinates, whereas controllers for the rotational subsystems generate the desired roll, pitch, and yaw angles. Thus, the rotational controllers stabilize all the attitudes of the X4-AUV at the desired ( x -, y -, or z -) position of the vehicle. Some numerical simulations are conducted to demonstrate the effectiveness of the proposed controllers.
doi_str_mv 10.1007/s10015-011-0918-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926322254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671323990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bba875a4fba959ad8340f4f3c212fd080209b0e1a612ecfb27ffe7de86d743e33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iywWI4fyS2x6riS6rEQhGb5SR2myqxi50O8OtxFeYu997wvCfdg9AtgQcCIB5TnqTEQAgGRSSWZ2hGKsKx4GV1nnfOGC6pkpfoKqUdABdQsRkSi8IHvw198GHomqIJfoyhLwY7bkNbuBCLNJq667vfzm8K44svjhfrz2t04Uyf7M1_ztH6-elj-YpX7y9vy8UKN6xkI65rI0VpuKuNKpVpJePguGMNJdS1IIGCqsESUxFqG1dT4ZwVrZVVKzizjM3R3XR3H8P3waZRD11qbN8bb8MhaUUrRikteSbvT5KkEoRRphRklExoE0NK0Tq9j91g4o8moI869aRTZ536qFPL3KFTJ2XWb2zUu3CIPv9-ovQHOB52gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671323990</pqid></control><display><type>article</type><title>A nonholonomic control method for stabilizing an X4-AUV</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zain, Zainah Md ; Watanabe, Keigo ; Izumi, Kiyotaka ; Nagai, Isaku</creator><creatorcontrib>Zain, Zainah Md ; Watanabe, Keigo ; Izumi, Kiyotaka ; Nagai, Isaku</creatorcontrib><description>A nonholonomic control method is considered for stabilizing all attitudes and positions ( x , y , or z ) of an underactuated X4 autonomous underwater vehicle (AUV) with four thrusters and six degrees of freedom (DOF), in which the positions are stabilized according to the Lyapunov stability theory. A dynamic model is first derived, and then a sequential nonlinear control strategy is implemented for the X4-AUV which is composed of translational and rotational subsystems. A controller for the translational subsystem stabilizes one position out of the x -, y -, and z -coordinates, whereas controllers for the rotational subsystems generate the desired roll, pitch, and yaw angles. Thus, the rotational controllers stabilize all the attitudes of the X4-AUV at the desired ( x -, y -, or z -) position of the vehicle. Some numerical simulations are conducted to demonstrate the effectiveness of the proposed controllers.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-011-0918-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Artificial Intelligence ; Autonomous underwater vehicles ; Computation by Abstract Devices ; Computer Science ; Control ; Degrees of freedom ; Dynamic models ; Mathematical analysis ; Mechatronics ; Original Article ; Robotics ; Rotational ; Strategy ; Thrusters ; Yaw</subject><ispartof>Artificial life and robotics, 2011-09, Vol.16 (2), p.202-207</ispartof><rights>International Symposium on Artificial Life and Robotics (ISAROB). 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bba875a4fba959ad8340f4f3c212fd080209b0e1a612ecfb27ffe7de86d743e33</citedby><cites>FETCH-LOGICAL-c353t-bba875a4fba959ad8340f4f3c212fd080209b0e1a612ecfb27ffe7de86d743e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-011-0918-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-011-0918-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zain, Zainah Md</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Izumi, Kiyotaka</creatorcontrib><creatorcontrib>Nagai, Isaku</creatorcontrib><title>A nonholonomic control method for stabilizing an X4-AUV</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>A nonholonomic control method is considered for stabilizing all attitudes and positions ( x , y , or z ) of an underactuated X4 autonomous underwater vehicle (AUV) with four thrusters and six degrees of freedom (DOF), in which the positions are stabilized according to the Lyapunov stability theory. A dynamic model is first derived, and then a sequential nonlinear control strategy is implemented for the X4-AUV which is composed of translational and rotational subsystems. A controller for the translational subsystem stabilizes one position out of the x -, y -, and z -coordinates, whereas controllers for the rotational subsystems generate the desired roll, pitch, and yaw angles. Thus, the rotational controllers stabilize all the attitudes of the X4-AUV at the desired ( x -, y -, or z -) position of the vehicle. Some numerical simulations are conducted to demonstrate the effectiveness of the proposed controllers.</description><subject>Artificial Intelligence</subject><subject>Autonomous underwater vehicles</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Rotational</subject><subject>Strategy</subject><subject>Thrusters</subject><subject>Yaw</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iywWI4fyS2x6riS6rEQhGb5SR2myqxi50O8OtxFeYu997wvCfdg9AtgQcCIB5TnqTEQAgGRSSWZ2hGKsKx4GV1nnfOGC6pkpfoKqUdABdQsRkSi8IHvw198GHomqIJfoyhLwY7bkNbuBCLNJq667vfzm8K44svjhfrz2t04Uyf7M1_ztH6-elj-YpX7y9vy8UKN6xkI65rI0VpuKuNKpVpJePguGMNJdS1IIGCqsESUxFqG1dT4ZwVrZVVKzizjM3R3XR3H8P3waZRD11qbN8bb8MhaUUrRikteSbvT5KkEoRRphRklExoE0NK0Tq9j91g4o8moI869aRTZ536qFPL3KFTJ2XWb2zUu3CIPv9-ovQHOB52gg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Zain, Zainah Md</creator><creator>Watanabe, Keigo</creator><creator>Izumi, Kiyotaka</creator><creator>Nagai, Isaku</creator><general>Springer Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110901</creationdate><title>A nonholonomic control method for stabilizing an X4-AUV</title><author>Zain, Zainah Md ; Watanabe, Keigo ; Izumi, Kiyotaka ; Nagai, Isaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bba875a4fba959ad8340f4f3c212fd080209b0e1a612ecfb27ffe7de86d743e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial Intelligence</topic><topic>Autonomous underwater vehicles</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Rotational</topic><topic>Strategy</topic><topic>Thrusters</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zain, Zainah Md</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Izumi, Kiyotaka</creatorcontrib><creatorcontrib>Nagai, Isaku</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zain, Zainah Md</au><au>Watanabe, Keigo</au><au>Izumi, Kiyotaka</au><au>Nagai, Isaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonholonomic control method for stabilizing an X4-AUV</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>16</volume><issue>2</issue><spage>202</spage><epage>207</epage><pages>202-207</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>A nonholonomic control method is considered for stabilizing all attitudes and positions ( x , y , or z ) of an underactuated X4 autonomous underwater vehicle (AUV) with four thrusters and six degrees of freedom (DOF), in which the positions are stabilized according to the Lyapunov stability theory. A dynamic model is first derived, and then a sequential nonlinear control strategy is implemented for the X4-AUV which is composed of translational and rotational subsystems. A controller for the translational subsystem stabilizes one position out of the x -, y -, and z -coordinates, whereas controllers for the rotational subsystems generate the desired roll, pitch, and yaw angles. Thus, the rotational controllers stabilize all the attitudes of the X4-AUV at the desired ( x -, y -, or z -) position of the vehicle. Some numerical simulations are conducted to demonstrate the effectiveness of the proposed controllers.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10015-011-0918-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2011-09, Vol.16 (2), p.202-207
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_miscellaneous_926322254
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Autonomous underwater vehicles
Computation by Abstract Devices
Computer Science
Control
Degrees of freedom
Dynamic models
Mathematical analysis
Mechatronics
Original Article
Robotics
Rotational
Strategy
Thrusters
Yaw
title A nonholonomic control method for stabilizing an X4-AUV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonholonomic%20control%20method%20for%20stabilizing%20an%20X4-AUV&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Zain,%20Zainah%20Md&rft.date=2011-09-01&rft.volume=16&rft.issue=2&rft.spage=202&rft.epage=207&rft.pages=202-207&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-011-0918-8&rft_dat=%3Cproquest_cross%3E1671323990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671323990&rft_id=info:pmid/&rfr_iscdi=true