The new numerical method for solving the system of two-dimensional Burgers’ equations
In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equati...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2011-10, Vol.62 (8), p.3279-3291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3291 |
---|---|
container_issue | 8 |
container_start_page | 3279 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 62 |
creator | Zhao, Guozhong Yu, Xijun Zhang, Rongpei |
description | In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method. |
doi_str_mv | 10.1016/j.camwa.2011.08.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926321283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111007176</els_id><sourcerecordid>926321283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqXwBSzemBL8SG13YICKl1SJpYjRcp2b1lUSt7bTqhu_we_xJaSUmelKV-dc6R6ErinJKaHidpVb0-xMzgilOVE5KYoTNKBK8kwKoU7RgKixyihj9BxdxLgihBSckQH6mC0Bt7DDbddAcNbUuIG09CWufMDR11vXLnDqobiPCRrsK5x2PitdA210vu2Fhy4sIMTvzy8Mm86kfhsv0Vll6ghXf3OI3p8eZ5OXbPr2_Dq5n2aWK5IysGBGRlqiKFWslLYqqJWKzs1clIW0Zi5FYRUzxFS8ELJkvKzGjFkxJmIkRnyIbo5318FvOohJNy5aqGvTgu-iHjPBGWWK9yQ_kjb4GANUeh1cY8JeU6IPFfVK_1bUh4qaKN1X7K27owX9E1sHQUfroLVQugA26dK7f_0fELl-Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926321283</pqid></control><display><type>article</type><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</creator><creatorcontrib>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</creatorcontrib><description>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.08.044</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Burgers’ equations ; Finite element method ; Galerkin methods ; Heat equation ; Heat equations ; Hopf-Cole transformation ; Local discontinuous Galerkin finite element method ; Mathematical analysis ; Mathematical models ; Transformations ; Transforms ; Two dimensional</subject><ispartof>Computers & mathematics with applications (1987), 2011-10, Vol.62 (8), p.3279-3291</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</citedby><cites>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2011.08.044$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zhao, Guozhong</creatorcontrib><creatorcontrib>Yu, Xijun</creatorcontrib><creatorcontrib>Zhang, Rongpei</creatorcontrib><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</description><subject>Burgers’ equations</subject><subject>Finite element method</subject><subject>Galerkin methods</subject><subject>Heat equation</subject><subject>Heat equations</subject><subject>Hopf-Cole transformation</subject><subject>Local discontinuous Galerkin finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Transformations</subject><subject>Transforms</subject><subject>Two dimensional</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUQC0EEqXwBSzemBL8SG13YICKl1SJpYjRcp2b1lUSt7bTqhu_we_xJaSUmelKV-dc6R6ErinJKaHidpVb0-xMzgilOVE5KYoTNKBK8kwKoU7RgKixyihj9BxdxLgihBSckQH6mC0Bt7DDbddAcNbUuIG09CWufMDR11vXLnDqobiPCRrsK5x2PitdA210vu2Fhy4sIMTvzy8Mm86kfhsv0Vll6ghXf3OI3p8eZ5OXbPr2_Dq5n2aWK5IysGBGRlqiKFWslLYqqJWKzs1clIW0Zi5FYRUzxFS8ELJkvKzGjFkxJmIkRnyIbo5318FvOohJNy5aqGvTgu-iHjPBGWWK9yQ_kjb4GANUeh1cY8JeU6IPFfVK_1bUh4qaKN1X7K27owX9E1sHQUfroLVQugA26dK7f_0fELl-Jg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Zhao, Guozhong</creator><creator>Yu, Xijun</creator><creator>Zhang, Rongpei</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><author>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Burgers’ equations</topic><topic>Finite element method</topic><topic>Galerkin methods</topic><topic>Heat equation</topic><topic>Heat equations</topic><topic>Hopf-Cole transformation</topic><topic>Local discontinuous Galerkin finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Transformations</topic><topic>Transforms</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guozhong</creatorcontrib><creatorcontrib>Yu, Xijun</creatorcontrib><creatorcontrib>Zhang, Rongpei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Guozhong</au><au>Yu, Xijun</au><au>Zhang, Rongpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The new numerical method for solving the system of two-dimensional Burgers’ equations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>62</volume><issue>8</issue><spage>3279</spage><epage>3291</epage><pages>3279-3291</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.08.044</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2011-10, Vol.62 (8), p.3279-3291 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_926321283 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Burgers’ equations Finite element method Galerkin methods Heat equation Heat equations Hopf-Cole transformation Local discontinuous Galerkin finite element method Mathematical analysis Mathematical models Transformations Transforms Two dimensional |
title | The new numerical method for solving the system of two-dimensional Burgers’ equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20new%20numerical%20method%20for%20solving%20the%20system%20of%20two-dimensional%20Burgers%E2%80%99%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhao,%20Guozhong&rft.date=2011-10-01&rft.volume=62&rft.issue=8&rft.spage=3279&rft.epage=3291&rft.pages=3279-3291&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.08.044&rft_dat=%3Cproquest_cross%3E926321283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926321283&rft_id=info:pmid/&rft_els_id=S0898122111007176&rfr_iscdi=true |