The new numerical method for solving the system of two-dimensional Burgers’ equations

In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2011-10, Vol.62 (8), p.3279-3291
Hauptverfasser: Zhao, Guozhong, Yu, Xijun, Zhang, Rongpei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3291
container_issue 8
container_start_page 3279
container_title Computers & mathematics with applications (1987)
container_volume 62
creator Zhao, Guozhong
Yu, Xijun
Zhang, Rongpei
description In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.
doi_str_mv 10.1016/j.camwa.2011.08.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926321283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111007176</els_id><sourcerecordid>926321283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqXwBSzemBL8SG13YICKl1SJpYjRcp2b1lUSt7bTqhu_we_xJaSUmelKV-dc6R6ErinJKaHidpVb0-xMzgilOVE5KYoTNKBK8kwKoU7RgKixyihj9BxdxLgihBSckQH6mC0Bt7DDbddAcNbUuIG09CWufMDR11vXLnDqobiPCRrsK5x2PitdA210vu2Fhy4sIMTvzy8Mm86kfhsv0Vll6ghXf3OI3p8eZ5OXbPr2_Dq5n2aWK5IysGBGRlqiKFWslLYqqJWKzs1clIW0Zi5FYRUzxFS8ELJkvKzGjFkxJmIkRnyIbo5318FvOohJNy5aqGvTgu-iHjPBGWWK9yQ_kjb4GANUeh1cY8JeU6IPFfVK_1bUh4qaKN1X7K27owX9E1sHQUfroLVQugA26dK7f_0fELl-Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926321283</pqid></control><display><type>article</type><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</creator><creatorcontrib>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</creatorcontrib><description>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.08.044</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Burgers’ equations ; Finite element method ; Galerkin methods ; Heat equation ; Heat equations ; Hopf-Cole transformation ; Local discontinuous Galerkin finite element method ; Mathematical analysis ; Mathematical models ; Transformations ; Transforms ; Two dimensional</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011-10, Vol.62 (8), p.3279-3291</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</citedby><cites>FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2011.08.044$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zhao, Guozhong</creatorcontrib><creatorcontrib>Yu, Xijun</creatorcontrib><creatorcontrib>Zhang, Rongpei</creatorcontrib><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</description><subject>Burgers’ equations</subject><subject>Finite element method</subject><subject>Galerkin methods</subject><subject>Heat equation</subject><subject>Heat equations</subject><subject>Hopf-Cole transformation</subject><subject>Local discontinuous Galerkin finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Transformations</subject><subject>Transforms</subject><subject>Two dimensional</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUQC0EEqXwBSzemBL8SG13YICKl1SJpYjRcp2b1lUSt7bTqhu_we_xJaSUmelKV-dc6R6ErinJKaHidpVb0-xMzgilOVE5KYoTNKBK8kwKoU7RgKixyihj9BxdxLgihBSckQH6mC0Bt7DDbddAcNbUuIG09CWufMDR11vXLnDqobiPCRrsK5x2PitdA210vu2Fhy4sIMTvzy8Mm86kfhsv0Vll6ghXf3OI3p8eZ5OXbPr2_Dq5n2aWK5IysGBGRlqiKFWslLYqqJWKzs1clIW0Zi5FYRUzxFS8ELJkvKzGjFkxJmIkRnyIbo5318FvOohJNy5aqGvTgu-iHjPBGWWK9yQ_kjb4GANUeh1cY8JeU6IPFfVK_1bUh4qaKN1X7K27owX9E1sHQUfroLVQugA26dK7f_0fELl-Jg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Zhao, Guozhong</creator><creator>Yu, Xijun</creator><creator>Zhang, Rongpei</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>The new numerical method for solving the system of two-dimensional Burgers’ equations</title><author>Zhao, Guozhong ; Yu, Xijun ; Zhang, Rongpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ecea5a7c081182d7cf41c781bab6d47cab764c82a0af3467d23df922c69065653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Burgers’ equations</topic><topic>Finite element method</topic><topic>Galerkin methods</topic><topic>Heat equation</topic><topic>Heat equations</topic><topic>Hopf-Cole transformation</topic><topic>Local discontinuous Galerkin finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Transformations</topic><topic>Transforms</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guozhong</creatorcontrib><creatorcontrib>Yu, Xijun</creatorcontrib><creatorcontrib>Zhang, Rongpei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Guozhong</au><au>Yu, Xijun</au><au>Zhang, Rongpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The new numerical method for solving the system of two-dimensional Burgers’ equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>62</volume><issue>8</issue><spage>3279</spage><epage>3291</epage><pages>3279-3291</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, the system of two-dimensional Burgers’ equations are solved by local discontinuous Galerkin (LDG) finite element method. The new method is based on the two-dimensional Hopf–Cole transformations, which transform the system of two-dimensional Burgers’ equations into a linear heat equation. Then the linear heat equation is solved by the LDG finite element method. The numerical solution of the heat equation is used to derive the numerical solutions of Burgers’ equations directly. Such a LDG method can also be used to find the numerical solution of the two-dimensional Burgers’ equation by rewriting Burgers’ equation as a system of the two-dimensional Burgers’ equations. Three numerical examples are used to demonstrate the efficiency and accuracy of the method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.08.044</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011-10, Vol.62 (8), p.3279-3291
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_926321283
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Burgers’ equations
Finite element method
Galerkin methods
Heat equation
Heat equations
Hopf-Cole transformation
Local discontinuous Galerkin finite element method
Mathematical analysis
Mathematical models
Transformations
Transforms
Two dimensional
title The new numerical method for solving the system of two-dimensional Burgers’ equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20new%20numerical%20method%20for%20solving%20the%20system%20of%20two-dimensional%20Burgers%E2%80%99%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhao,%20Guozhong&rft.date=2011-10-01&rft.volume=62&rft.issue=8&rft.spage=3279&rft.epage=3291&rft.pages=3279-3291&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.08.044&rft_dat=%3Cproquest_cross%3E926321283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926321283&rft_id=info:pmid/&rft_els_id=S0898122111007176&rfr_iscdi=true