Development of a pulse control-type MEMS microrobot with a hardware neural network

This article presents the micro-electro-mechanical systems (MEMS) microrobot which demonstrates locomotion controlled by hardware neural networks (HNN). The size of the microrobot fabricated by the MEMS technology is 4 × 4 × 3.5 mm. The frame of the robot is made of silicon wafer, and it is equipped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2011-09, Vol.16 (2), p.229-233
Hauptverfasser: Okazaki, Kazuto, Ogiwara, Tatsuya, Yang, Dongshin, Sakata, Kentaro, Saito, Ken, Sekine, Yoshifumi, Uchikoba, Fumio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents the micro-electro-mechanical systems (MEMS) microrobot which demonstrates locomotion controlled by hardware neural networks (HNN). The size of the microrobot fabricated by the MEMS technology is 4 × 4 × 3.5 mm. The frame of the robot is made of silicon wafer, and it is equipped with a rotary-type actuator, a link mechanism, and six legs. The rotary-type actuator generates rotational movement by applying an electrical current to artificial muscle wires. The locomotion of the microrobot is obtained by the rotation of the rotary-type actuator. As in a living organism, the HNN realized robot control without using any software programs, A/D converters, or additional driving circuits. A central pattern generator (CPG) model was implemented as an HNN system to emulate the locomotion pattern. The MEMS microrobot emulated the locomotion method and the neural networks of an insect with the rotary-type actuator, the link mechanism, and the HNN. The microrobot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 0.325 mm/s and the step width was 1.3 mm.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-011-0925-9