Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature

The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼10 3 s −1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2011-10, Vol.59 (18), p.6949-6962
Hauptverfasser: Dudamell, N.V., Ulacia, I., Gálvez, F., Yi, S., Bohlen, J., Letzig, D., Hurtado, I., Pérez-Prado, M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6962
container_issue 18
container_start_page 6949
container_title Acta materialia
container_volume 59
creator Dudamell, N.V.
Ulacia, I.
Gálvez, F.
Yi, S.
Bohlen, J.
Letzig, D.
Hurtado, I.
Pérez-Prado, M.T.
description The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼10 3 s −1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of { 1 0 1 ¯ 2 } extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of { 1 0 1 ¯ 2 } extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent.
doi_str_mv 10.1016/j.actamat.2011.07.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926319078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411005337</els_id><sourcerecordid>926319078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-2a102885aaa2a93c80fcee49f61ab9091ea7554480b3cccb6e446f1419a4d9163</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxU1poGnSj1DQpfRkZ8aW_-hUQmjSQEov6aUXMSuPtlpsaSvJKfvt42WXXnuagffePOZXFB8RKgTsbnYVmUwz5aoGxAr6CmT_prjEoW_KWrbN23VvWlV2spXvivcp7QCw7iVcFvb5r_Pe-a0gP4ptJOdFWjaje3HJBS_GJR7F8eBpdkaMbENcm45SsILE9624_dWgSL-Zs6BpCgdBWcQQZpF53nOkvES-Li4sTYk_nOdV8fP-6_Pdt_Lpx8Pj3e1TaSQOuawJoR6GlohqUo0ZwBpmqWyHtFGgkKlvWykH2DTGmE3HUnYWJSqSo8KuuSo-n-7uY_izcMp6dsnwNJHnsCSt6q5BBf2wOtuT08SQUmSr99HNFA8aQR-x6p0-Y9VHrBp6vWJdc5_ODZQMTTaSNy79C6-4-xpArb4vJx-v7744jjoZx97w6CKbrMfg_tP0Cp9NkO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926319078</pqid></control><display><type>article</type><title>Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Dudamell, N.V. ; Ulacia, I. ; Gálvez, F. ; Yi, S. ; Bohlen, J. ; Letzig, D. ; Hurtado, I. ; Pérez-Prado, M.T.</creator><creatorcontrib>Dudamell, N.V. ; Ulacia, I. ; Gálvez, F. ; Yi, S. ; Bohlen, J. ; Letzig, D. ; Hurtado, I. ; Pérez-Prado, M.T.</creatorcontrib><description>The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼10 3 s −1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of { 1 0 1 ¯ 2 } extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of { 1 0 1 ¯ 2 } extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.07.047</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; AZ31 ; Deformation ; Dynamics ; Exact sciences and technology ; Grains ; High strain rate ; Magnesium ; Magnesium base alloys ; Metals. Metallurgy ; Orientation ; Recovery ; Slip ; Strain rate ; Subdivisions ; Twinning</subject><ispartof>Acta materialia, 2011-10, Vol.59 (18), p.6949-6962</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-2a102885aaa2a93c80fcee49f61ab9091ea7554480b3cccb6e446f1419a4d9163</citedby><cites>FETCH-LOGICAL-c418t-2a102885aaa2a93c80fcee49f61ab9091ea7554480b3cccb6e446f1419a4d9163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645411005337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24572009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudamell, N.V.</creatorcontrib><creatorcontrib>Ulacia, I.</creatorcontrib><creatorcontrib>Gálvez, F.</creatorcontrib><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Bohlen, J.</creatorcontrib><creatorcontrib>Letzig, D.</creatorcontrib><creatorcontrib>Hurtado, I.</creatorcontrib><creatorcontrib>Pérez-Prado, M.T.</creatorcontrib><title>Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature</title><title>Acta materialia</title><description>The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼10 3 s −1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of { 1 0 1 ¯ 2 } extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of { 1 0 1 ¯ 2 } extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent.</description><subject>Applied sciences</subject><subject>AZ31</subject><subject>Deformation</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Grains</subject><subject>High strain rate</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Metals. Metallurgy</subject><subject>Orientation</subject><subject>Recovery</subject><subject>Slip</subject><subject>Strain rate</subject><subject>Subdivisions</subject><subject>Twinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxU1poGnSj1DQpfRkZ8aW_-hUQmjSQEov6aUXMSuPtlpsaSvJKfvt42WXXnuagffePOZXFB8RKgTsbnYVmUwz5aoGxAr6CmT_prjEoW_KWrbN23VvWlV2spXvivcp7QCw7iVcFvb5r_Pe-a0gP4ptJOdFWjaje3HJBS_GJR7F8eBpdkaMbENcm45SsILE9624_dWgSL-Zs6BpCgdBWcQQZpF53nOkvES-Li4sTYk_nOdV8fP-6_Pdt_Lpx8Pj3e1TaSQOuawJoR6GlohqUo0ZwBpmqWyHtFGgkKlvWykH2DTGmE3HUnYWJSqSo8KuuSo-n-7uY_izcMp6dsnwNJHnsCSt6q5BBf2wOtuT08SQUmSr99HNFA8aQR-x6p0-Y9VHrBp6vWJdc5_ODZQMTTaSNy79C6-4-xpArb4vJx-v7744jjoZx97w6CKbrMfg_tP0Cp9NkO4</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dudamell, N.V.</creator><creator>Ulacia, I.</creator><creator>Gálvez, F.</creator><creator>Yi, S.</creator><creator>Bohlen, J.</creator><creator>Letzig, D.</creator><creator>Hurtado, I.</creator><creator>Pérez-Prado, M.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature</title><author>Dudamell, N.V. ; Ulacia, I. ; Gálvez, F. ; Yi, S. ; Bohlen, J. ; Letzig, D. ; Hurtado, I. ; Pérez-Prado, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-2a102885aaa2a93c80fcee49f61ab9091ea7554480b3cccb6e446f1419a4d9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>AZ31</topic><topic>Deformation</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Grains</topic><topic>High strain rate</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Metals. Metallurgy</topic><topic>Orientation</topic><topic>Recovery</topic><topic>Slip</topic><topic>Strain rate</topic><topic>Subdivisions</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudamell, N.V.</creatorcontrib><creatorcontrib>Ulacia, I.</creatorcontrib><creatorcontrib>Gálvez, F.</creatorcontrib><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Bohlen, J.</creatorcontrib><creatorcontrib>Letzig, D.</creatorcontrib><creatorcontrib>Hurtado, I.</creatorcontrib><creatorcontrib>Pérez-Prado, M.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudamell, N.V.</au><au>Ulacia, I.</au><au>Gálvez, F.</au><au>Yi, S.</au><au>Bohlen, J.</au><au>Letzig, D.</au><au>Hurtado, I.</au><au>Pérez-Prado, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature</atitle><jtitle>Acta materialia</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>59</volume><issue>18</issue><spage>6949</spage><epage>6962</epage><pages>6949-6962</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼10 3 s −1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of { 1 0 1 ¯ 2 } extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of { 1 0 1 ¯ 2 } extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.07.047</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2011-10, Vol.59 (18), p.6949-6962
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_926319078
source Elsevier ScienceDirect Journals
subjects Applied sciences
AZ31
Deformation
Dynamics
Exact sciences and technology
Grains
High strain rate
Magnesium
Magnesium base alloys
Metals. Metallurgy
Orientation
Recovery
Slip
Strain rate
Subdivisions
Twinning
title Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twinning%20and%20grain%20subdivision%20during%20dynamic%20deformation%20of%20a%20Mg%20AZ31%20sheet%20alloy%20at%20room%20temperature&rft.jtitle=Acta%20materialia&rft.au=Dudamell,%20N.V.&rft.date=2011-10-01&rft.volume=59&rft.issue=18&rft.spage=6949&rft.epage=6962&rft.pages=6949-6962&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.07.047&rft_dat=%3Cproquest_cross%3E926319078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926319078&rft_id=info:pmid/&rft_els_id=S1359645411005337&rfr_iscdi=true