Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3
Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2011-08, Vol.94 (8), p.2473-2478 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2478 |
---|---|
container_issue | 8 |
container_start_page | 2473 |
container_title | Journal of the American Ceramic Society |
container_volume | 94 |
creator | Ehmke, Matthias Glaum, Julia Jo, Wook Granzow, Torsten Rödel, Jürgen |
description | Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT. |
doi_str_mv | 10.1111/j.1551-2916.2010.04379.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_926318654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926318654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</originalsourceid><addsrcrecordid>eNqNkU9PwjAYxhujiYh-h97Ew-Btu3XrxQQIoIYAUQzHpts6KQ6mdIvgp7cDw9HYw_unffJr3z4IYQJt4lZn1SZBQDwqCG9TcLvgs1C0d2eocTo4Rw0AoF4YUbhEV9auXEtE5DfQ4qVUscnNtypNscFFhsulxkPXvVXae9bW2FJtSjxbKqtxvMf9aoq7aWoOcrPBrZ4hHTpRLtzNzZR5PVWna3SRqdzqm9_cRK_Dwbz_4I2no8d-d-wlPoDwVKaAxyGoLI5SX_tURHEWE5IEQBkDTvwkS91DNU9jzv0YwiARkGQBZSELacSa6PbI_dgWn5W2pVwbm-g8VxtdVFYKyhmJeOD_R-luDx25iVp_KgkXlBEGYQ29P0q_TK738mNr1mq7lwRkbY5cydoDWXsga3PkwRy5k0_d_qAuHcA7Atw_690JoLbvkrsJA7mYjGQ0Az4ZBwsp2A9EJ5Ae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692313074</pqid></control><display><type>article</type><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</creator><creatorcontrib>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</creatorcontrib><description>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2010.04379.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Ceramics ; Defects ; Degradation ; Domain walls ; Fatigue (materials) ; Phase transformations ; Pinning ; Stabilization ; Symmetry</subject><ispartof>Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2473-2478</ispartof><rights>2011 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2010.04379.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2010.04379.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ehmke, Matthias</creatorcontrib><creatorcontrib>Glaum, Julia</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Granzow, Torsten</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><title>Journal of the American Ceramic Society</title><description>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</description><subject>Ceramics</subject><subject>Defects</subject><subject>Degradation</subject><subject>Domain walls</subject><subject>Fatigue (materials)</subject><subject>Phase transformations</subject><subject>Pinning</subject><subject>Stabilization</subject><subject>Symmetry</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PwjAYxhujiYh-h97Ew-Btu3XrxQQIoIYAUQzHpts6KQ6mdIvgp7cDw9HYw_unffJr3z4IYQJt4lZn1SZBQDwqCG9TcLvgs1C0d2eocTo4Rw0AoF4YUbhEV9auXEtE5DfQ4qVUscnNtypNscFFhsulxkPXvVXae9bW2FJtSjxbKqtxvMf9aoq7aWoOcrPBrZ4hHTpRLtzNzZR5PVWna3SRqdzqm9_cRK_Dwbz_4I2no8d-d-wlPoDwVKaAxyGoLI5SX_tURHEWE5IEQBkDTvwkS91DNU9jzv0YwiARkGQBZSELacSa6PbI_dgWn5W2pVwbm-g8VxtdVFYKyhmJeOD_R-luDx25iVp_KgkXlBEGYQ29P0q_TK738mNr1mq7lwRkbY5cydoDWXsga3PkwRy5k0_d_qAuHcA7Atw_690JoLbvkrsJA7mYjGQ0Az4ZBwsp2A9EJ5Ae</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Ehmke, Matthias</creator><creator>Glaum, Julia</creator><creator>Jo, Wook</creator><creator>Granzow, Torsten</creator><creator>Rödel, Jürgen</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201108</creationdate><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><author>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ceramics</topic><topic>Defects</topic><topic>Degradation</topic><topic>Domain walls</topic><topic>Fatigue (materials)</topic><topic>Phase transformations</topic><topic>Pinning</topic><topic>Stabilization</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehmke, Matthias</creatorcontrib><creatorcontrib>Glaum, Julia</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Granzow, Torsten</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehmke, Matthias</au><au>Glaum, Julia</au><au>Jo, Wook</au><au>Granzow, Torsten</au><au>Rödel, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2011-08</date><risdate>2011</risdate><volume>94</volume><issue>8</issue><spage>2473</spage><epage>2478</epage><pages>2473-2478</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2010.04379.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2473-2478 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_926318654 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ceramics Defects Degradation Domain walls Fatigue (materials) Phase transformations Pinning Stabilization Symmetry |
title | Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20the%20Fatigue-Resistant%20Phase%20by%20CuO%20Addition%20in%20(Bi1/2Na1/2)TiO3-BaTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Ehmke,%20Matthias&rft.date=2011-08&rft.volume=94&rft.issue=8&rft.spage=2473&rft.epage=2478&rft.pages=2473-2478&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1551-2916.2010.04379.x&rft_dat=%3Cproquest_wiley%3E926318654%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692313074&rft_id=info:pmid/&rfr_iscdi=true |