Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3

Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2011-08, Vol.94 (8), p.2473-2478
Hauptverfasser: Ehmke, Matthias, Glaum, Julia, Jo, Wook, Granzow, Torsten, Rödel, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2478
container_issue 8
container_start_page 2473
container_title Journal of the American Ceramic Society
container_volume 94
creator Ehmke, Matthias
Glaum, Julia
Jo, Wook
Granzow, Torsten
Rödel, Jürgen
description Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.
doi_str_mv 10.1111/j.1551-2916.2010.04379.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_926318654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926318654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</originalsourceid><addsrcrecordid>eNqNkU9PwjAYxhujiYh-h97Ew-Btu3XrxQQIoIYAUQzHpts6KQ6mdIvgp7cDw9HYw_unffJr3z4IYQJt4lZn1SZBQDwqCG9TcLvgs1C0d2eocTo4Rw0AoF4YUbhEV9auXEtE5DfQ4qVUscnNtypNscFFhsulxkPXvVXae9bW2FJtSjxbKqtxvMf9aoq7aWoOcrPBrZ4hHTpRLtzNzZR5PVWna3SRqdzqm9_cRK_Dwbz_4I2no8d-d-wlPoDwVKaAxyGoLI5SX_tURHEWE5IEQBkDTvwkS91DNU9jzv0YwiARkGQBZSELacSa6PbI_dgWn5W2pVwbm-g8VxtdVFYKyhmJeOD_R-luDx25iVp_KgkXlBEGYQ29P0q_TK738mNr1mq7lwRkbY5cydoDWXsga3PkwRy5k0_d_qAuHcA7Atw_690JoLbvkrsJA7mYjGQ0Az4ZBwsp2A9EJ5Ae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692313074</pqid></control><display><type>article</type><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</creator><creatorcontrib>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</creatorcontrib><description>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2010.04379.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Ceramics ; Defects ; Degradation ; Domain walls ; Fatigue (materials) ; Phase transformations ; Pinning ; Stabilization ; Symmetry</subject><ispartof>Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2473-2478</ispartof><rights>2011 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2010.04379.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2010.04379.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ehmke, Matthias</creatorcontrib><creatorcontrib>Glaum, Julia</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Granzow, Torsten</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><title>Journal of the American Ceramic Society</title><description>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</description><subject>Ceramics</subject><subject>Defects</subject><subject>Degradation</subject><subject>Domain walls</subject><subject>Fatigue (materials)</subject><subject>Phase transformations</subject><subject>Pinning</subject><subject>Stabilization</subject><subject>Symmetry</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PwjAYxhujiYh-h97Ew-Btu3XrxQQIoIYAUQzHpts6KQ6mdIvgp7cDw9HYw_unffJr3z4IYQJt4lZn1SZBQDwqCG9TcLvgs1C0d2eocTo4Rw0AoF4YUbhEV9auXEtE5DfQ4qVUscnNtypNscFFhsulxkPXvVXae9bW2FJtSjxbKqtxvMf9aoq7aWoOcrPBrZ4hHTpRLtzNzZR5PVWna3SRqdzqm9_cRK_Dwbz_4I2no8d-d-wlPoDwVKaAxyGoLI5SX_tURHEWE5IEQBkDTvwkS91DNU9jzv0YwiARkGQBZSELacSa6PbI_dgWn5W2pVwbm-g8VxtdVFYKyhmJeOD_R-luDx25iVp_KgkXlBEGYQ29P0q_TK738mNr1mq7lwRkbY5cydoDWXsga3PkwRy5k0_d_qAuHcA7Atw_690JoLbvkrsJA7mYjGQ0Az4ZBwsp2A9EJ5Ae</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Ehmke, Matthias</creator><creator>Glaum, Julia</creator><creator>Jo, Wook</creator><creator>Granzow, Torsten</creator><creator>Rödel, Jürgen</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201108</creationdate><title>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</title><author>Ehmke, Matthias ; Glaum, Julia ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4009-afa06b70afb8d4e4298bfb11c502330614cfd984e6db664b075c90cf523737283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ceramics</topic><topic>Defects</topic><topic>Degradation</topic><topic>Domain walls</topic><topic>Fatigue (materials)</topic><topic>Phase transformations</topic><topic>Pinning</topic><topic>Stabilization</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehmke, Matthias</creatorcontrib><creatorcontrib>Glaum, Julia</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Granzow, Torsten</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehmke, Matthias</au><au>Glaum, Julia</au><au>Jo, Wook</au><au>Granzow, Torsten</au><au>Rödel, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2011-08</date><risdate>2011</risdate><volume>94</volume><issue>8</issue><spage>2473</spage><epage>2478</epage><pages>2473-2478</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Bipolar electric fatigue in the lead‐free material 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 (BNT‐BT) is investigated throughout the first 100 cycles in which a strong degradation of macroscopic electromechanical properties is observed. The addition of 1 mol% CuO successfully stabilizes the fatigue‐resistant phase and retains the initial electromechanical properties. In order to explain the underlying mechanisms, two models are proposed: degradation takes place either due to (1) pinning of the domain walls by defect charges or (2) an electric field‐induced symmetry change that reduces the amount of rhombohedral phase that dominates the macroscopic properties. This different approach based on symmetry considerations to explain the fatigue behavior has an impact on future fatigue studies that are concerned with novel lead‐free materials on the basis of BNT‐BT.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2010.04379.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2011-08, Vol.94 (8), p.2473-2478
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_926318654
source Wiley Online Library Journals Frontfile Complete
subjects Ceramics
Defects
Degradation
Domain walls
Fatigue (materials)
Phase transformations
Pinning
Stabilization
Symmetry
title Stabilization of the Fatigue-Resistant Phase by CuO Addition in (Bi1/2Na1/2)TiO3-BaTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20the%20Fatigue-Resistant%20Phase%20by%20CuO%20Addition%20in%20(Bi1/2Na1/2)TiO3-BaTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Ehmke,%20Matthias&rft.date=2011-08&rft.volume=94&rft.issue=8&rft.spage=2473&rft.epage=2478&rft.pages=2473-2478&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1551-2916.2010.04379.x&rft_dat=%3Cproquest_wiley%3E926318654%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692313074&rft_id=info:pmid/&rfr_iscdi=true