A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method

A novel synthetic route to the highly-loaded rubber nanocomposite was developed by a stabilization–destabilization process of colloidal mixtures using montmorillonite (MMT) and natural rubber (NR) as a model system. By analyzing the zeta potentials of the MMT and NR colloids, the stable and unstable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2011-11, Vol.42 (11), p.1826-1832
Hauptverfasser: Lee, Chan-Woo, Hwang, Taeseon, Nam, Gi-Yong, Hong, Jung-Pyo, Lee, Dong-Ah, Oh, Joon-Suk, Kwak, Sung Bok, Lee, Seong-Hoon, Lee, Wan-Sul, Yang, Kyung-Mo, Park, Jong-Min, Lee, Yong-Sang, Chung, Kyung-Ho, Lee, Youngkwan, Choi, Hyouk Ryeol, Nam, Jae-Do
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1832
container_issue 11
container_start_page 1826
container_title Composites. Part A, Applied science and manufacturing
container_volume 42
creator Lee, Chan-Woo
Hwang, Taeseon
Nam, Gi-Yong
Hong, Jung-Pyo
Lee, Dong-Ah
Oh, Joon-Suk
Kwak, Sung Bok
Lee, Seong-Hoon
Lee, Wan-Sul
Yang, Kyung-Mo
Park, Jong-Min
Lee, Yong-Sang
Chung, Kyung-Ho
Lee, Youngkwan
Choi, Hyouk Ryeol
Nam, Jae-Do
description A novel synthetic route to the highly-loaded rubber nanocomposite was developed by a stabilization–destabilization process of colloidal mixtures using montmorillonite (MMT) and natural rubber (NR) as a model system. By analyzing the zeta potentials of the MMT and NR colloids, the stable and unstable conditions of their mixture were identified and subsequently used as the mixing and precipitating process conditions, respectively. The NR drops and MMT nanoplatelets were homogeneously mixed due to their electrostatic repulsion in the stabilized condition of pH > 10.5 and, then the stabilized colloidal mixture were forced to precipitate quickly by changing to pH < 4.0 for destabilization, where the surface charge of the NR drops became positive and attracted the negatively-charged MMT particles resultantly to coagulate together. The developed methodology enabled a maximum loading content of MMT up to 25 phr (20.0 wt%) with a surprisingly large increment in mechanical properties: e.g., tensile modulus by 198% and tear strength by 69%.
doi_str_mv 10.1016/j.compositesa.2011.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926317900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X11002673</els_id><sourcerecordid>926317900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4313ba9a62746c02d23572193937c4f459930f4bc56bb1cbb487beb7bef596bd3</originalsourceid><addsrcrecordid>eNqNkE1qHDEQhZsQQ5yJz2BlEbLqdqkltVpLM-QPDFkkBu-EpFbbGtTSRFIbHAjkDrlhThINY_Kzy0KUqHr1XvE1zUsMHQY8XOw6E5d9zK7YrLoeMO5g7AD4k-YUj3xs2Ujhaf0TJtqRsJtnzfOcdwBAiMCnzbdLFOK99Sg_hHJnizMoxbVYVCIKqqxJeZRWrW26WGIoS0zO-xhqXB2H-CccrdmFW2RiHbsJ5aK08-6rKi6Gn99_TPafDlpsuYvTi-ZkVj7bs8e6aa7fvvm8fd9efXz3YXt51RoKvLSUYKKVUEPP6WCgn3rCeI8FEYQbOlMmBIGZasMGrbHRmo5cW13fzMSgJ7JpXh999yl-WespcnHZWO9VsHHNUvQDwVxUKJtGHJUmxZyTneU-uUWlB4lBHojLnfyLuDwQlzDKSrzuvnpMUdkoPycVjMu_DXo6AGcwVN35UTerKNVtqprrT9WIAfSYCXpw2h4VtkK5dzbJbJwNxk4uWVPkFN1_3PML97er7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926317900</pqid></control><display><type>article</type><title>A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Chan-Woo ; Hwang, Taeseon ; Nam, Gi-Yong ; Hong, Jung-Pyo ; Lee, Dong-Ah ; Oh, Joon-Suk ; Kwak, Sung Bok ; Lee, Seong-Hoon ; Lee, Wan-Sul ; Yang, Kyung-Mo ; Park, Jong-Min ; Lee, Yong-Sang ; Chung, Kyung-Ho ; Lee, Youngkwan ; Choi, Hyouk Ryeol ; Nam, Jae-Do</creator><creatorcontrib>Lee, Chan-Woo ; Hwang, Taeseon ; Nam, Gi-Yong ; Hong, Jung-Pyo ; Lee, Dong-Ah ; Oh, Joon-Suk ; Kwak, Sung Bok ; Lee, Seong-Hoon ; Lee, Wan-Sul ; Yang, Kyung-Mo ; Park, Jong-Min ; Lee, Yong-Sang ; Chung, Kyung-Ho ; Lee, Youngkwan ; Choi, Hyouk Ryeol ; Nam, Jae-Do</creatorcontrib><description>A novel synthetic route to the highly-loaded rubber nanocomposite was developed by a stabilization–destabilization process of colloidal mixtures using montmorillonite (MMT) and natural rubber (NR) as a model system. By analyzing the zeta potentials of the MMT and NR colloids, the stable and unstable conditions of their mixture were identified and subsequently used as the mixing and precipitating process conditions, respectively. The NR drops and MMT nanoplatelets were homogeneously mixed due to their electrostatic repulsion in the stabilized condition of pH &gt; 10.5 and, then the stabilized colloidal mixture were forced to precipitate quickly by changing to pH &lt; 4.0 for destabilization, where the surface charge of the NR drops became positive and attracted the negatively-charged MMT particles resultantly to coagulate together. The developed methodology enabled a maximum loading content of MMT up to 25 phr (20.0 wt%) with a surprisingly large increment in mechanical properties: e.g., tensile modulus by 198% and tear strength by 69%.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2011.08.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Polymer–matrix composites ; Applied sciences ; B. Elasticity ; B. Mechanical properties ; Colloiding ; Colloids ; Composites ; electrostatic interactions ; Electrostatics ; Exact sciences and technology ; Forms of application and semi-finished materials ; mechanical properties ; mixing ; mixtures ; Montmorillonite ; Nano-structures ; Nanocomposites ; Nanomaterials ; Nanostructure ; Natural rubber ; particles ; Polymer industry, paints, wood ; rubber ; Technology of polymers ; zeta potential</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2011-11, Vol.42 (11), p.1826-1832</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4313ba9a62746c02d23572193937c4f459930f4bc56bb1cbb487beb7bef596bd3</citedby><cites>FETCH-LOGICAL-c407t-4313ba9a62746c02d23572193937c4f459930f4bc56bb1cbb487beb7bef596bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359835X11002673$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24607506$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chan-Woo</creatorcontrib><creatorcontrib>Hwang, Taeseon</creatorcontrib><creatorcontrib>Nam, Gi-Yong</creatorcontrib><creatorcontrib>Hong, Jung-Pyo</creatorcontrib><creatorcontrib>Lee, Dong-Ah</creatorcontrib><creatorcontrib>Oh, Joon-Suk</creatorcontrib><creatorcontrib>Kwak, Sung Bok</creatorcontrib><creatorcontrib>Lee, Seong-Hoon</creatorcontrib><creatorcontrib>Lee, Wan-Sul</creatorcontrib><creatorcontrib>Yang, Kyung-Mo</creatorcontrib><creatorcontrib>Park, Jong-Min</creatorcontrib><creatorcontrib>Lee, Yong-Sang</creatorcontrib><creatorcontrib>Chung, Kyung-Ho</creatorcontrib><creatorcontrib>Lee, Youngkwan</creatorcontrib><creatorcontrib>Choi, Hyouk Ryeol</creatorcontrib><creatorcontrib>Nam, Jae-Do</creatorcontrib><title>A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method</title><title>Composites. Part A, Applied science and manufacturing</title><description>A novel synthetic route to the highly-loaded rubber nanocomposite was developed by a stabilization–destabilization process of colloidal mixtures using montmorillonite (MMT) and natural rubber (NR) as a model system. By analyzing the zeta potentials of the MMT and NR colloids, the stable and unstable conditions of their mixture were identified and subsequently used as the mixing and precipitating process conditions, respectively. The NR drops and MMT nanoplatelets were homogeneously mixed due to their electrostatic repulsion in the stabilized condition of pH &gt; 10.5 and, then the stabilized colloidal mixture were forced to precipitate quickly by changing to pH &lt; 4.0 for destabilization, where the surface charge of the NR drops became positive and attracted the negatively-charged MMT particles resultantly to coagulate together. The developed methodology enabled a maximum loading content of MMT up to 25 phr (20.0 wt%) with a surprisingly large increment in mechanical properties: e.g., tensile modulus by 198% and tear strength by 69%.</description><subject>A. Polymer–matrix composites</subject><subject>Applied sciences</subject><subject>B. Elasticity</subject><subject>B. Mechanical properties</subject><subject>Colloiding</subject><subject>Colloids</subject><subject>Composites</subject><subject>electrostatic interactions</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>mechanical properties</subject><subject>mixing</subject><subject>mixtures</subject><subject>Montmorillonite</subject><subject>Nano-structures</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Natural rubber</subject><subject>particles</subject><subject>Polymer industry, paints, wood</subject><subject>rubber</subject><subject>Technology of polymers</subject><subject>zeta potential</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1qHDEQhZsQQ5yJz2BlEbLqdqkltVpLM-QPDFkkBu-EpFbbGtTSRFIbHAjkDrlhThINY_Kzy0KUqHr1XvE1zUsMHQY8XOw6E5d9zK7YrLoeMO5g7AD4k-YUj3xs2Ujhaf0TJtqRsJtnzfOcdwBAiMCnzbdLFOK99Sg_hHJnizMoxbVYVCIKqqxJeZRWrW26WGIoS0zO-xhqXB2H-CccrdmFW2RiHbsJ5aK08-6rKi6Gn99_TPafDlpsuYvTi-ZkVj7bs8e6aa7fvvm8fd9efXz3YXt51RoKvLSUYKKVUEPP6WCgn3rCeI8FEYQbOlMmBIGZasMGrbHRmo5cW13fzMSgJ7JpXh999yl-WespcnHZWO9VsHHNUvQDwVxUKJtGHJUmxZyTneU-uUWlB4lBHojLnfyLuDwQlzDKSrzuvnpMUdkoPycVjMu_DXo6AGcwVN35UTerKNVtqprrT9WIAfSYCXpw2h4VtkK5dzbJbJwNxk4uWVPkFN1_3PML97er7g</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Lee, Chan-Woo</creator><creator>Hwang, Taeseon</creator><creator>Nam, Gi-Yong</creator><creator>Hong, Jung-Pyo</creator><creator>Lee, Dong-Ah</creator><creator>Oh, Joon-Suk</creator><creator>Kwak, Sung Bok</creator><creator>Lee, Seong-Hoon</creator><creator>Lee, Wan-Sul</creator><creator>Yang, Kyung-Mo</creator><creator>Park, Jong-Min</creator><creator>Lee, Yong-Sang</creator><creator>Chung, Kyung-Ho</creator><creator>Lee, Youngkwan</creator><creator>Choi, Hyouk Ryeol</creator><creator>Nam, Jae-Do</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20111101</creationdate><title>A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method</title><author>Lee, Chan-Woo ; Hwang, Taeseon ; Nam, Gi-Yong ; Hong, Jung-Pyo ; Lee, Dong-Ah ; Oh, Joon-Suk ; Kwak, Sung Bok ; Lee, Seong-Hoon ; Lee, Wan-Sul ; Yang, Kyung-Mo ; Park, Jong-Min ; Lee, Yong-Sang ; Chung, Kyung-Ho ; Lee, Youngkwan ; Choi, Hyouk Ryeol ; Nam, Jae-Do</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4313ba9a62746c02d23572193937c4f459930f4bc56bb1cbb487beb7bef596bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Polymer–matrix composites</topic><topic>Applied sciences</topic><topic>B. Elasticity</topic><topic>B. Mechanical properties</topic><topic>Colloiding</topic><topic>Colloids</topic><topic>Composites</topic><topic>electrostatic interactions</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>mechanical properties</topic><topic>mixing</topic><topic>mixtures</topic><topic>Montmorillonite</topic><topic>Nano-structures</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Natural rubber</topic><topic>particles</topic><topic>Polymer industry, paints, wood</topic><topic>rubber</topic><topic>Technology of polymers</topic><topic>zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chan-Woo</creatorcontrib><creatorcontrib>Hwang, Taeseon</creatorcontrib><creatorcontrib>Nam, Gi-Yong</creatorcontrib><creatorcontrib>Hong, Jung-Pyo</creatorcontrib><creatorcontrib>Lee, Dong-Ah</creatorcontrib><creatorcontrib>Oh, Joon-Suk</creatorcontrib><creatorcontrib>Kwak, Sung Bok</creatorcontrib><creatorcontrib>Lee, Seong-Hoon</creatorcontrib><creatorcontrib>Lee, Wan-Sul</creatorcontrib><creatorcontrib>Yang, Kyung-Mo</creatorcontrib><creatorcontrib>Park, Jong-Min</creatorcontrib><creatorcontrib>Lee, Yong-Sang</creatorcontrib><creatorcontrib>Chung, Kyung-Ho</creatorcontrib><creatorcontrib>Lee, Youngkwan</creatorcontrib><creatorcontrib>Choi, Hyouk Ryeol</creatorcontrib><creatorcontrib>Nam, Jae-Do</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chan-Woo</au><au>Hwang, Taeseon</au><au>Nam, Gi-Yong</au><au>Hong, Jung-Pyo</au><au>Lee, Dong-Ah</au><au>Oh, Joon-Suk</au><au>Kwak, Sung Bok</au><au>Lee, Seong-Hoon</au><au>Lee, Wan-Sul</au><au>Yang, Kyung-Mo</au><au>Park, Jong-Min</au><au>Lee, Yong-Sang</au><au>Chung, Kyung-Ho</au><au>Lee, Youngkwan</au><au>Choi, Hyouk Ryeol</au><au>Nam, Jae-Do</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>42</volume><issue>11</issue><spage>1826</spage><epage>1832</epage><pages>1826-1832</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>A novel synthetic route to the highly-loaded rubber nanocomposite was developed by a stabilization–destabilization process of colloidal mixtures using montmorillonite (MMT) and natural rubber (NR) as a model system. By analyzing the zeta potentials of the MMT and NR colloids, the stable and unstable conditions of their mixture were identified and subsequently used as the mixing and precipitating process conditions, respectively. The NR drops and MMT nanoplatelets were homogeneously mixed due to their electrostatic repulsion in the stabilized condition of pH &gt; 10.5 and, then the stabilized colloidal mixture were forced to precipitate quickly by changing to pH &lt; 4.0 for destabilization, where the surface charge of the NR drops became positive and attracted the negatively-charged MMT particles resultantly to coagulate together. The developed methodology enabled a maximum loading content of MMT up to 25 phr (20.0 wt%) with a surprisingly large increment in mechanical properties: e.g., tensile modulus by 198% and tear strength by 69%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2011.08.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2011-11, Vol.42 (11), p.1826-1832
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_926317900
source Elsevier ScienceDirect Journals
subjects A. Polymer–matrix composites
Applied sciences
B. Elasticity
B. Mechanical properties
Colloiding
Colloids
Composites
electrostatic interactions
Electrostatics
Exact sciences and technology
Forms of application and semi-finished materials
mechanical properties
mixing
mixtures
Montmorillonite
Nano-structures
Nanocomposites
Nanomaterials
Nanostructure
Natural rubber
particles
Polymer industry, paints, wood
rubber
Technology of polymers
zeta potential
title A novel synthetic route to natural rubber/montmorillonite nanocomposites using colloid stabilization–destabilization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20synthetic%20route%20to%20natural%20rubber/montmorillonite%20nanocomposites%20using%20colloid%20stabilization%E2%80%93destabilization%20method&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Lee,%20Chan-Woo&rft.date=2011-11-01&rft.volume=42&rft.issue=11&rft.spage=1826&rft.epage=1832&rft.pages=1826-1832&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2011.08.007&rft_dat=%3Cproquest_cross%3E926317900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926317900&rft_id=info:pmid/&rft_els_id=S1359835X11002673&rfr_iscdi=true