A note about positive solutions for an equation of Kirchhoff type
A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is establ...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-11, Vol.218 (5), p.2082-2090 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2090 |
---|---|
container_issue | 5 |
container_start_page | 2082 |
container_title | Applied mathematics and computation |
container_volume | 218 |
creator | Martinez, André L.M. Castelani, Emerson V. Silva, Jair da Shirabayashi, Wesley V.I. |
description | A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established. |
doi_str_mv | 10.1016/j.amc.2011.07.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926311596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311009581</els_id><sourcerecordid>926311596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx845Swm8R2Ik5VxZ-oxAXOluvYqqs2Tm2nEm-Pq3LmtNLszOrbIeQeoURA_rgt1V6XFSCWIEqo2AWZYSvqgvGmuyQzgI4XNUB9TW5i3AKA4NjMyGJBB58MVWs_JTr66JI7Ghr9bkrOD5FaH6gaqDlM6iRQb-mHC3qz8dbS9DOaW3Jl1S6au785J98vz1_Lt2L1-fq-XKwKXbWYCrE2ra4zWIsWRNMIzitlFTYZCtq6Ysgr1kPddchaJkTPssqVAG3WLebFnDyc747BHyYTk9y7qM1upwbjpyi7iteIrOPZiWenDj7GYKwcg9ur8CMR5KktuZW5LXlqS4KQGSpnns4Zk184OhNk1M4M2vQuGJ1k790_6V-jH2_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926311596</pqid></control><display><type>article</type><title>A note about positive solutions for an equation of Kirchhoff type</title><source>Elsevier ScienceDirect Journals</source><creator>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</creator><creatorcontrib>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</creatorcontrib><description>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.07.025</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Alternatives of Leray–Schauder ; Boundary value problems ; Computation ; Convergence ; Existence theorems ; Krasnoselskii’s fixed point theorem ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Numerical analysis ; Numerical solutions</subject><ispartof>Applied mathematics and computation, 2011-11, Vol.218 (5), p.2082-2090</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311009581$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Martinez, André L.M.</creatorcontrib><creatorcontrib>Castelani, Emerson V.</creatorcontrib><creatorcontrib>Silva, Jair da</creatorcontrib><creatorcontrib>Shirabayashi, Wesley V.I.</creatorcontrib><title>A note about positive solutions for an equation of Kirchhoff type</title><title>Applied mathematics and computation</title><description>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</description><subject>Alternatives of Leray–Schauder</subject><subject>Boundary value problems</subject><subject>Computation</subject><subject>Convergence</subject><subject>Existence theorems</subject><subject>Krasnoselskii’s fixed point theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical solutions</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx845Swm8R2Ik5VxZ-oxAXOluvYqqs2Tm2nEm-Pq3LmtNLszOrbIeQeoURA_rgt1V6XFSCWIEqo2AWZYSvqgvGmuyQzgI4XNUB9TW5i3AKA4NjMyGJBB58MVWs_JTr66JI7Ghr9bkrOD5FaH6gaqDlM6iRQb-mHC3qz8dbS9DOaW3Jl1S6au785J98vz1_Lt2L1-fq-XKwKXbWYCrE2ra4zWIsWRNMIzitlFTYZCtq6Ysgr1kPddchaJkTPssqVAG3WLebFnDyc747BHyYTk9y7qM1upwbjpyi7iteIrOPZiWenDj7GYKwcg9ur8CMR5KktuZW5LXlqS4KQGSpnns4Zk184OhNk1M4M2vQuGJ1k790_6V-jH2_r</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Martinez, André L.M.</creator><creator>Castelani, Emerson V.</creator><creator>Silva, Jair da</creator><creator>Shirabayashi, Wesley V.I.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>A note about positive solutions for an equation of Kirchhoff type</title><author>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternatives of Leray–Schauder</topic><topic>Boundary value problems</topic><topic>Computation</topic><topic>Convergence</topic><topic>Existence theorems</topic><topic>Krasnoselskii’s fixed point theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, André L.M.</creatorcontrib><creatorcontrib>Castelani, Emerson V.</creatorcontrib><creatorcontrib>Silva, Jair da</creatorcontrib><creatorcontrib>Shirabayashi, Wesley V.I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, André L.M.</au><au>Castelani, Emerson V.</au><au>Silva, Jair da</au><au>Shirabayashi, Wesley V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note about positive solutions for an equation of Kirchhoff type</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>218</volume><issue>5</issue><spage>2082</spage><epage>2090</epage><pages>2082-2090</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.07.025</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-11, Vol.218 (5), p.2082-2090 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_926311596 |
source | Elsevier ScienceDirect Journals |
subjects | Alternatives of Leray–Schauder Boundary value problems Computation Convergence Existence theorems Krasnoselskii’s fixed point theorem Mathematical analysis Mathematical models Nonlinearity Numerical analysis Numerical solutions |
title | A note about positive solutions for an equation of Kirchhoff type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20about%20positive%20solutions%20for%20an%20equation%20of%20Kirchhoff%20type&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Martinez,%20Andr%C3%A9%20L.M.&rft.date=2011-11-01&rft.volume=218&rft.issue=5&rft.spage=2082&rft.epage=2090&rft.pages=2082-2090&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2011.07.025&rft_dat=%3Cproquest_cross%3E926311596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926311596&rft_id=info:pmid/&rft_els_id=S0096300311009581&rfr_iscdi=true |