A note about positive solutions for an equation of Kirchhoff type

A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-11, Vol.218 (5), p.2082-2090
Hauptverfasser: Martinez, André L.M., Castelani, Emerson V., Silva, Jair da, Shirabayashi, Wesley V.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2090
container_issue 5
container_start_page 2082
container_title Applied mathematics and computation
container_volume 218
creator Martinez, André L.M.
Castelani, Emerson V.
Silva, Jair da
Shirabayashi, Wesley V.I.
description A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.
doi_str_mv 10.1016/j.amc.2011.07.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926311596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311009581</els_id><sourcerecordid>926311596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANx845Swm8R2Ik5VxZ-oxAXOluvYqqs2Tm2nEm-Pq3LmtNLszOrbIeQeoURA_rgt1V6XFSCWIEqo2AWZYSvqgvGmuyQzgI4XNUB9TW5i3AKA4NjMyGJBB58MVWs_JTr66JI7Ghr9bkrOD5FaH6gaqDlM6iRQb-mHC3qz8dbS9DOaW3Jl1S6au785J98vz1_Lt2L1-fq-XKwKXbWYCrE2ra4zWIsWRNMIzitlFTYZCtq6Ysgr1kPddchaJkTPssqVAG3WLebFnDyc747BHyYTk9y7qM1upwbjpyi7iteIrOPZiWenDj7GYKwcg9ur8CMR5KktuZW5LXlqS4KQGSpnns4Zk184OhNk1M4M2vQuGJ1k790_6V-jH2_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926311596</pqid></control><display><type>article</type><title>A note about positive solutions for an equation of Kirchhoff type</title><source>Elsevier ScienceDirect Journals</source><creator>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</creator><creatorcontrib>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</creatorcontrib><description>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.07.025</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Alternatives of Leray–Schauder ; Boundary value problems ; Computation ; Convergence ; Existence theorems ; Krasnoselskii’s fixed point theorem ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Numerical analysis ; Numerical solutions</subject><ispartof>Applied mathematics and computation, 2011-11, Vol.218 (5), p.2082-2090</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311009581$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Martinez, André L.M.</creatorcontrib><creatorcontrib>Castelani, Emerson V.</creatorcontrib><creatorcontrib>Silva, Jair da</creatorcontrib><creatorcontrib>Shirabayashi, Wesley V.I.</creatorcontrib><title>A note about positive solutions for an equation of Kirchhoff type</title><title>Applied mathematics and computation</title><description>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</description><subject>Alternatives of Leray–Schauder</subject><subject>Boundary value problems</subject><subject>Computation</subject><subject>Convergence</subject><subject>Existence theorems</subject><subject>Krasnoselskii’s fixed point theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical solutions</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANx845Swm8R2Ik5VxZ-oxAXOluvYqqs2Tm2nEm-Pq3LmtNLszOrbIeQeoURA_rgt1V6XFSCWIEqo2AWZYSvqgvGmuyQzgI4XNUB9TW5i3AKA4NjMyGJBB58MVWs_JTr66JI7Ghr9bkrOD5FaH6gaqDlM6iRQb-mHC3qz8dbS9DOaW3Jl1S6au785J98vz1_Lt2L1-fq-XKwKXbWYCrE2ra4zWIsWRNMIzitlFTYZCtq6Ysgr1kPddchaJkTPssqVAG3WLebFnDyc747BHyYTk9y7qM1upwbjpyi7iteIrOPZiWenDj7GYKwcg9ur8CMR5KktuZW5LXlqS4KQGSpnns4Zk184OhNk1M4M2vQuGJ1k790_6V-jH2_r</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Martinez, André L.M.</creator><creator>Castelani, Emerson V.</creator><creator>Silva, Jair da</creator><creator>Shirabayashi, Wesley V.I.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>A note about positive solutions for an equation of Kirchhoff type</title><author>Martinez, André L.M. ; Castelani, Emerson V. ; Silva, Jair da ; Shirabayashi, Wesley V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7be8c302581f07447662afa14300083251625d0399158577d50836a70ceb81d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternatives of Leray–Schauder</topic><topic>Boundary value problems</topic><topic>Computation</topic><topic>Convergence</topic><topic>Existence theorems</topic><topic>Krasnoselskii’s fixed point theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, André L.M.</creatorcontrib><creatorcontrib>Castelani, Emerson V.</creatorcontrib><creatorcontrib>Silva, Jair da</creatorcontrib><creatorcontrib>Shirabayashi, Wesley V.I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, André L.M.</au><au>Castelani, Emerson V.</au><au>Silva, Jair da</au><au>Shirabayashi, Wesley V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note about positive solutions for an equation of Kirchhoff type</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>218</volume><issue>5</issue><spage>2082</spage><epage>2090</epage><pages>2082-2090</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>A nonlinear boundary value problem related to an equation of Kirchhoff is considered. The existence of positive solutions is proved through alternative Leray–Schauder’s type combined with Krasnoselskii’s fixed point theorem. Numerical methods are presented and a result of local convergence is established.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.07.025</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-11, Vol.218 (5), p.2082-2090
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_926311596
source Elsevier ScienceDirect Journals
subjects Alternatives of Leray–Schauder
Boundary value problems
Computation
Convergence
Existence theorems
Krasnoselskii’s fixed point theorem
Mathematical analysis
Mathematical models
Nonlinearity
Numerical analysis
Numerical solutions
title A note about positive solutions for an equation of Kirchhoff type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20about%20positive%20solutions%20for%20an%20equation%20of%20Kirchhoff%20type&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Martinez,%20Andr%C3%A9%20L.M.&rft.date=2011-11-01&rft.volume=218&rft.issue=5&rft.spage=2082&rft.epage=2090&rft.pages=2082-2090&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2011.07.025&rft_dat=%3Cproquest_cross%3E926311596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926311596&rft_id=info:pmid/&rft_els_id=S0096300311009581&rfr_iscdi=true