Representation of bidirectional ground motions for design spectra in building codes

The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake spectra 2011-08, Vol.27 (3), p.927-937
Hauptverfasser: Stewart, Jonathan P, Abrahamson, Norman A, Atkinson, Gail M, Baker, Jack W, Boore, David M, Bozorgnia, Yousef, Campbell, Kenneth W, Comartin, Craig D, Idriss, I. M, Lew, Marshall, Mehrain, Michael, Moehle, Jack P, Naeim, Farzad, Sabol, Thomas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 937
container_issue 3
container_start_page 927
container_title Earthquake spectra
container_volume 27
creator Stewart, Jonathan P
Abrahamson, Norman A
Atkinson, Gail M
Baker, Jack W
Boore, David M
Bozorgnia, Yousef
Campbell, Kenneth W
Comartin, Craig D
Idriss, I. M
Lew, Marshall
Mehrain, Michael
Moehle, Jack P
Naeim, Farzad
Sabol, Thomas A
description The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.
doi_str_mv 10.1193/1.3608001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926309564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-6134f1a02485e915e7a406eeeb493b0e3f34997ebc21098469d8a11aa3c38f13</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq4fB_9BLiIiXWeatNscZfELFgTde0jTacnSTdakRfz3dtnF0zDMM-_hZewGYY6oxCPORQkVAJ6wGSopsyoHPGWzalEUWa4EnLOLlDYTKCXAjH190i5SIj-YwQXPQ8tr17hIdr-anncxjL7h27DfE29D5A0l13medhOKhjvP69H1jfMdt2E6XrGz1vSJro_zkq1fntfLt2z18fq-fFplRhQwZCUK2aKBXFYFKSxoYSSURFRLJWog0Qqp1IJqmyOoSpaqqQyiMcKKqkVxye4OsbsYvkdKg966ZKnvjacwJq3yUoAqSjnJ-4O0MaQUqdW76LYm_moEva9Noz7WNtnbY6pJ1vRtNN669P-QSylhIcTkHg6uo5CsI2_pJ8S-0Zswxqm4pHPIUQNUU774A2-OetY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309564</pqid></control><display><type>article</type><title>Representation of bidirectional ground motions for design spectra in building codes</title><source>Sage Journals</source><creator>Stewart, Jonathan P ; Abrahamson, Norman A ; Atkinson, Gail M ; Baker, Jack W ; Boore, David M ; Bozorgnia, Yousef ; Campbell, Kenneth W ; Comartin, Craig D ; Idriss, I. M ; Lew, Marshall ; Mehrain, Michael ; Moehle, Jack P ; Naeim, Farzad ; Sabol, Thomas A</creator><creatorcontrib>Stewart, Jonathan P ; Abrahamson, Norman A ; Atkinson, Gail M ; Baker, Jack W ; Boore, David M ; Bozorgnia, Yousef ; Campbell, Kenneth W ; Comartin, Craig D ; Idriss, I. M ; Lew, Marshall ; Mehrain, Michael ; Moehle, Jack P ; Naeim, Farzad ; Sabol, Thomas A</creatorcontrib><description>The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.</description><identifier>ISSN: 8755-2930</identifier><identifier>EISSN: 1944-8201</identifier><identifier>DOI: 10.1193/1.3608001</identifier><identifier>CODEN: EASPEF</identifier><language>eng</language><publisher>Oakland, CA: Earthquake Engineering Research Institute</publisher><subject>acceleration ; building codes ; buildings ; design ; dynamic properties ; Earth sciences ; Earth, ocean, space ; earthquakes ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; failures ; ground motion ; Internal geophysics ; Natural hazards: prediction, damages, etc ; peak ground acceleration ; seismic response ; seismic risk ; Seismology ; stiffness ; strength ; structures ; vibration</subject><ispartof>Earthquake spectra, 2011-08, Vol.27 (3), p.927-937</ispartof><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-6134f1a02485e915e7a406eeeb493b0e3f34997ebc21098469d8a11aa3c38f13</citedby><cites>FETCH-LOGICAL-a350t-6134f1a02485e915e7a406eeeb493b0e3f34997ebc21098469d8a11aa3c38f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24440733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stewart, Jonathan P</creatorcontrib><creatorcontrib>Abrahamson, Norman A</creatorcontrib><creatorcontrib>Atkinson, Gail M</creatorcontrib><creatorcontrib>Baker, Jack W</creatorcontrib><creatorcontrib>Boore, David M</creatorcontrib><creatorcontrib>Bozorgnia, Yousef</creatorcontrib><creatorcontrib>Campbell, Kenneth W</creatorcontrib><creatorcontrib>Comartin, Craig D</creatorcontrib><creatorcontrib>Idriss, I. M</creatorcontrib><creatorcontrib>Lew, Marshall</creatorcontrib><creatorcontrib>Mehrain, Michael</creatorcontrib><creatorcontrib>Moehle, Jack P</creatorcontrib><creatorcontrib>Naeim, Farzad</creatorcontrib><creatorcontrib>Sabol, Thomas A</creatorcontrib><title>Representation of bidirectional ground motions for design spectra in building codes</title><title>Earthquake spectra</title><description>The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.</description><subject>acceleration</subject><subject>building codes</subject><subject>buildings</subject><subject>design</subject><subject>dynamic properties</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>earthquakes</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>failures</subject><subject>ground motion</subject><subject>Internal geophysics</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>peak ground acceleration</subject><subject>seismic response</subject><subject>seismic risk</subject><subject>Seismology</subject><subject>stiffness</subject><subject>strength</subject><subject>structures</subject><subject>vibration</subject><issn>8755-2930</issn><issn>1944-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq4fB_9BLiIiXWeatNscZfELFgTde0jTacnSTdakRfz3dtnF0zDMM-_hZewGYY6oxCPORQkVAJ6wGSopsyoHPGWzalEUWa4EnLOLlDYTKCXAjH190i5SIj-YwQXPQ8tr17hIdr-anncxjL7h27DfE29D5A0l13medhOKhjvP69H1jfMdt2E6XrGz1vSJro_zkq1fntfLt2z18fq-fFplRhQwZCUK2aKBXFYFKSxoYSSURFRLJWog0Qqp1IJqmyOoSpaqqQyiMcKKqkVxye4OsbsYvkdKg966ZKnvjacwJq3yUoAqSjnJ-4O0MaQUqdW76LYm_moEva9Noz7WNtnbY6pJ1vRtNN669P-QSylhIcTkHg6uo5CsI2_pJ8S-0Zswxqm4pHPIUQNUU774A2-OetY</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Stewart, Jonathan P</creator><creator>Abrahamson, Norman A</creator><creator>Atkinson, Gail M</creator><creator>Baker, Jack W</creator><creator>Boore, David M</creator><creator>Bozorgnia, Yousef</creator><creator>Campbell, Kenneth W</creator><creator>Comartin, Craig D</creator><creator>Idriss, I. M</creator><creator>Lew, Marshall</creator><creator>Mehrain, Michael</creator><creator>Moehle, Jack P</creator><creator>Naeim, Farzad</creator><creator>Sabol, Thomas A</creator><general>Earthquake Engineering Research Institute</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110801</creationdate><title>Representation of bidirectional ground motions for design spectra in building codes</title><author>Stewart, Jonathan P ; Abrahamson, Norman A ; Atkinson, Gail M ; Baker, Jack W ; Boore, David M ; Bozorgnia, Yousef ; Campbell, Kenneth W ; Comartin, Craig D ; Idriss, I. M ; Lew, Marshall ; Mehrain, Michael ; Moehle, Jack P ; Naeim, Farzad ; Sabol, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-6134f1a02485e915e7a406eeeb493b0e3f34997ebc21098469d8a11aa3c38f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acceleration</topic><topic>building codes</topic><topic>buildings</topic><topic>design</topic><topic>dynamic properties</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>earthquakes</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>failures</topic><topic>ground motion</topic><topic>Internal geophysics</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>peak ground acceleration</topic><topic>seismic response</topic><topic>seismic risk</topic><topic>Seismology</topic><topic>stiffness</topic><topic>strength</topic><topic>structures</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, Jonathan P</creatorcontrib><creatorcontrib>Abrahamson, Norman A</creatorcontrib><creatorcontrib>Atkinson, Gail M</creatorcontrib><creatorcontrib>Baker, Jack W</creatorcontrib><creatorcontrib>Boore, David M</creatorcontrib><creatorcontrib>Bozorgnia, Yousef</creatorcontrib><creatorcontrib>Campbell, Kenneth W</creatorcontrib><creatorcontrib>Comartin, Craig D</creatorcontrib><creatorcontrib>Idriss, I. M</creatorcontrib><creatorcontrib>Lew, Marshall</creatorcontrib><creatorcontrib>Mehrain, Michael</creatorcontrib><creatorcontrib>Moehle, Jack P</creatorcontrib><creatorcontrib>Naeim, Farzad</creatorcontrib><creatorcontrib>Sabol, Thomas A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earthquake spectra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, Jonathan P</au><au>Abrahamson, Norman A</au><au>Atkinson, Gail M</au><au>Baker, Jack W</au><au>Boore, David M</au><au>Bozorgnia, Yousef</au><au>Campbell, Kenneth W</au><au>Comartin, Craig D</au><au>Idriss, I. M</au><au>Lew, Marshall</au><au>Mehrain, Michael</au><au>Moehle, Jack P</au><au>Naeim, Farzad</au><au>Sabol, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of bidirectional ground motions for design spectra in building codes</atitle><jtitle>Earthquake spectra</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>27</volume><issue>3</issue><spage>927</spage><epage>937</epage><pages>927-937</pages><issn>8755-2930</issn><eissn>1944-8201</eissn><coden>EASPEF</coden><abstract>The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.</abstract><cop>Oakland, CA</cop><pub>Earthquake Engineering Research Institute</pub><doi>10.1193/1.3608001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8755-2930
ispartof Earthquake spectra, 2011-08, Vol.27 (3), p.927-937
issn 8755-2930
1944-8201
language eng
recordid cdi_proquest_miscellaneous_926309564
source Sage Journals
subjects acceleration
building codes
buildings
design
dynamic properties
Earth sciences
Earth, ocean, space
earthquakes
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
failures
ground motion
Internal geophysics
Natural hazards: prediction, damages, etc
peak ground acceleration
seismic response
seismic risk
Seismology
stiffness
strength
structures
vibration
title Representation of bidirectional ground motions for design spectra in building codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20bidirectional%20ground%20motions%20for%20design%20spectra%20in%20building%20codes&rft.jtitle=Earthquake%20spectra&rft.au=Stewart,%20Jonathan%20P&rft.date=2011-08-01&rft.volume=27&rft.issue=3&rft.spage=927&rft.epage=937&rft.pages=927-937&rft.issn=8755-2930&rft.eissn=1944-8201&rft.coden=EASPEF&rft_id=info:doi/10.1193/1.3608001&rft_dat=%3Cproquest_cross%3E926309564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926309564&rft_id=info:pmid/&rfr_iscdi=true