Hybrid liquid desiccant air-conditioning system: Experiments and simulations
This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system....
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2011-12, Vol.31 (17), p.3741-3747 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3747 |
---|---|
container_issue | 17 |
container_start_page | 3741 |
container_title | Applied thermal engineering |
container_volume | 31 |
creator | Yamaguchi, Seiichi Jeong, Jongsoo Saito, Kiyoshi Miyauchi, Hikoo Harada, Masatoshi |
description | This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger.
► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger. |
doi_str_mv | 10.1016/j.applthermaleng.2011.04.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431111001979</els_id><sourcerecordid>926309435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhjOARCn8hwwgpgR_5cOIBVWUIlVigdlynEtx5TipL0H035OqFRIb0y3Pve_dE0U3lKSU0Px-m-q-d8MnhFY78JuUEUpTIlJC5Fk0ozyTieCUXkSXiFtCKCsLMYvWq30VbB07uxunUQNaY7QfYm1DYjpf28F23vpNjHscoH2In797CLYFP2CsfR2jbUenDxReReeNdgjXpzmPPpbP74tVsn57eV08rRPDJRsSKVmmS5EzUuWN5KTkRSYqXgsmaEUzSUoCmW5MnTPGKi4qoA0zla54k0MDlM-ju2NuH7rdCDio1qIB57SHbkQlWc6JFDybyMcjaUKHGKBR_XS7DntFiTp4U1v115s6eFNEqMnbtH57KtJotGuC9sbibwYTWSaLgk3c8sjB9PWXhaDQWPAGahvADKru7P8KfwBanY95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309435</pqid></control><display><type>article</type><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</creator><creatorcontrib>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</creatorcontrib><description>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger.
► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2011.04.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air conditioning ; Air conditioning. Ventilation ; Applied sciences ; Computational efficiency ; Computing time ; Dehumidification ; Desiccants ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat pump ; Heat pumps ; Heat transfer ; Heating, air conditioning and ventilation ; Liquid desiccant ; Liquids ; Mathematical analysis ; Refrigerants ; Simulation ; Techniques, equipment. Control. Metering ; Theoretical studies. Data and constants. Metering ; Vapour compression heat pumps</subject><ispartof>Applied thermal engineering, 2011-12, Vol.31 (17), p.3741-3747</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</citedby><cites>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2011.04.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24559772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaguchi, Seiichi</creatorcontrib><creatorcontrib>Jeong, Jongsoo</creatorcontrib><creatorcontrib>Saito, Kiyoshi</creatorcontrib><creatorcontrib>Miyauchi, Hikoo</creatorcontrib><creatorcontrib>Harada, Masatoshi</creatorcontrib><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><title>Applied thermal engineering</title><description>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger.
► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</description><subject>Air conditioning</subject><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Dehumidification</subject><subject>Desiccants</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Heating, air conditioning and ventilation</subject><subject>Liquid desiccant</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Refrigerants</subject><subject>Simulation</subject><subject>Techniques, equipment. Control. Metering</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vapour compression heat pumps</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhjOARCn8hwwgpgR_5cOIBVWUIlVigdlynEtx5TipL0H035OqFRIb0y3Pve_dE0U3lKSU0Px-m-q-d8MnhFY78JuUEUpTIlJC5Fk0ozyTieCUXkSXiFtCKCsLMYvWq30VbB07uxunUQNaY7QfYm1DYjpf28F23vpNjHscoH2In797CLYFP2CsfR2jbUenDxReReeNdgjXpzmPPpbP74tVsn57eV08rRPDJRsSKVmmS5EzUuWN5KTkRSYqXgsmaEUzSUoCmW5MnTPGKi4qoA0zla54k0MDlM-ju2NuH7rdCDio1qIB57SHbkQlWc6JFDybyMcjaUKHGKBR_XS7DntFiTp4U1v115s6eFNEqMnbtH57KtJotGuC9sbibwYTWSaLgk3c8sjB9PWXhaDQWPAGahvADKru7P8KfwBanY95</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Yamaguchi, Seiichi</creator><creator>Jeong, Jongsoo</creator><creator>Saito, Kiyoshi</creator><creator>Miyauchi, Hikoo</creator><creator>Harada, Masatoshi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><author>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air conditioning</topic><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Dehumidification</topic><topic>Desiccants</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Heating, air conditioning and ventilation</topic><topic>Liquid desiccant</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Refrigerants</topic><topic>Simulation</topic><topic>Techniques, equipment. Control. Metering</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vapour compression heat pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Seiichi</creatorcontrib><creatorcontrib>Jeong, Jongsoo</creatorcontrib><creatorcontrib>Saito, Kiyoshi</creatorcontrib><creatorcontrib>Miyauchi, Hikoo</creatorcontrib><creatorcontrib>Harada, Masatoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Seiichi</au><au>Jeong, Jongsoo</au><au>Saito, Kiyoshi</au><au>Miyauchi, Hikoo</au><au>Harada, Masatoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</atitle><jtitle>Applied thermal engineering</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>31</volume><issue>17</issue><spage>3741</spage><epage>3747</epage><pages>3741-3747</pages><issn>1359-4311</issn><abstract>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger.
► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2011.04.009</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2011-12, Vol.31 (17), p.3741-3747 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_926309435 |
source | Access via ScienceDirect (Elsevier) |
subjects | Air conditioning Air conditioning. Ventilation Applied sciences Computational efficiency Computing time Dehumidification Desiccants Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat pump Heat pumps Heat transfer Heating, air conditioning and ventilation Liquid desiccant Liquids Mathematical analysis Refrigerants Simulation Techniques, equipment. Control. Metering Theoretical studies. Data and constants. Metering Vapour compression heat pumps |
title | Hybrid liquid desiccant air-conditioning system: Experiments and simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20liquid%20desiccant%20air-conditioning%20system:%20Experiments%20and%20simulations&rft.jtitle=Applied%20thermal%20engineering&rft.au=Yamaguchi,%20Seiichi&rft.date=2011-12-01&rft.volume=31&rft.issue=17&rft.spage=3741&rft.epage=3747&rft.pages=3741-3747&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2011.04.009&rft_dat=%3Cproquest_cross%3E926309435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926309435&rft_id=info:pmid/&rft_els_id=S1359431111001979&rfr_iscdi=true |