Hybrid liquid desiccant air-conditioning system: Experiments and simulations

This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2011-12, Vol.31 (17), p.3741-3747
Hauptverfasser: Yamaguchi, Seiichi, Jeong, Jongsoo, Saito, Kiyoshi, Miyauchi, Hikoo, Harada, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3747
container_issue 17
container_start_page 3741
container_title Applied thermal engineering
container_volume 31
creator Yamaguchi, Seiichi
Jeong, Jongsoo
Saito, Kiyoshi
Miyauchi, Hikoo
Harada, Masatoshi
description This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. ► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.
doi_str_mv 10.1016/j.applthermaleng.2011.04.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431111001979</els_id><sourcerecordid>926309435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhjOARCn8hwwgpgR_5cOIBVWUIlVigdlynEtx5TipL0H035OqFRIb0y3Pve_dE0U3lKSU0Px-m-q-d8MnhFY78JuUEUpTIlJC5Fk0ozyTieCUXkSXiFtCKCsLMYvWq30VbB07uxunUQNaY7QfYm1DYjpf28F23vpNjHscoH2In797CLYFP2CsfR2jbUenDxReReeNdgjXpzmPPpbP74tVsn57eV08rRPDJRsSKVmmS5EzUuWN5KTkRSYqXgsmaEUzSUoCmW5MnTPGKi4qoA0zla54k0MDlM-ju2NuH7rdCDio1qIB57SHbkQlWc6JFDybyMcjaUKHGKBR_XS7DntFiTp4U1v115s6eFNEqMnbtH57KtJotGuC9sbibwYTWSaLgk3c8sjB9PWXhaDQWPAGahvADKru7P8KfwBanY95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309435</pqid></control><display><type>article</type><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</creator><creatorcontrib>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</creatorcontrib><description>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. ► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2011.04.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air conditioning ; Air conditioning. Ventilation ; Applied sciences ; Computational efficiency ; Computing time ; Dehumidification ; Desiccants ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat pump ; Heat pumps ; Heat transfer ; Heating, air conditioning and ventilation ; Liquid desiccant ; Liquids ; Mathematical analysis ; Refrigerants ; Simulation ; Techniques, equipment. Control. Metering ; Theoretical studies. Data and constants. Metering ; Vapour compression heat pumps</subject><ispartof>Applied thermal engineering, 2011-12, Vol.31 (17), p.3741-3747</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</citedby><cites>FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2011.04.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24559772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaguchi, Seiichi</creatorcontrib><creatorcontrib>Jeong, Jongsoo</creatorcontrib><creatorcontrib>Saito, Kiyoshi</creatorcontrib><creatorcontrib>Miyauchi, Hikoo</creatorcontrib><creatorcontrib>Harada, Masatoshi</creatorcontrib><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><title>Applied thermal engineering</title><description>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. ► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</description><subject>Air conditioning</subject><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Dehumidification</subject><subject>Desiccants</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Heating, air conditioning and ventilation</subject><subject>Liquid desiccant</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Refrigerants</subject><subject>Simulation</subject><subject>Techniques, equipment. Control. Metering</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Vapour compression heat pumps</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhjOARCn8hwwgpgR_5cOIBVWUIlVigdlynEtx5TipL0H035OqFRIb0y3Pve_dE0U3lKSU0Px-m-q-d8MnhFY78JuUEUpTIlJC5Fk0ozyTieCUXkSXiFtCKCsLMYvWq30VbB07uxunUQNaY7QfYm1DYjpf28F23vpNjHscoH2In797CLYFP2CsfR2jbUenDxReReeNdgjXpzmPPpbP74tVsn57eV08rRPDJRsSKVmmS5EzUuWN5KTkRSYqXgsmaEUzSUoCmW5MnTPGKi4qoA0zla54k0MDlM-ju2NuH7rdCDio1qIB57SHbkQlWc6JFDybyMcjaUKHGKBR_XS7DntFiTp4U1v115s6eFNEqMnbtH57KtJotGuC9sbibwYTWSaLgk3c8sjB9PWXhaDQWPAGahvADKru7P8KfwBanY95</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Yamaguchi, Seiichi</creator><creator>Jeong, Jongsoo</creator><creator>Saito, Kiyoshi</creator><creator>Miyauchi, Hikoo</creator><creator>Harada, Masatoshi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</title><author>Yamaguchi, Seiichi ; Jeong, Jongsoo ; Saito, Kiyoshi ; Miyauchi, Hikoo ; Harada, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9925a84620b6f93083754b3d4241b159080e5afcd6222b34be1f2cbab3f6efe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air conditioning</topic><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Dehumidification</topic><topic>Desiccants</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Heating, air conditioning and ventilation</topic><topic>Liquid desiccant</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Refrigerants</topic><topic>Simulation</topic><topic>Techniques, equipment. Control. Metering</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Vapour compression heat pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Seiichi</creatorcontrib><creatorcontrib>Jeong, Jongsoo</creatorcontrib><creatorcontrib>Saito, Kiyoshi</creatorcontrib><creatorcontrib>Miyauchi, Hikoo</creatorcontrib><creatorcontrib>Harada, Masatoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Seiichi</au><au>Jeong, Jongsoo</au><au>Saito, Kiyoshi</au><au>Miyauchi, Hikoo</au><au>Harada, Masatoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid liquid desiccant air-conditioning system: Experiments and simulations</atitle><jtitle>Applied thermal engineering</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>31</volume><issue>17</issue><spage>3741</spage><epage>3747</epage><pages>3741-3747</pages><issn>1359-4311</issn><abstract>This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. ► We focus on a hybrid liquid desiccant air-conditioning system. ► The feature of the system is that the absorber is integrated with the evaporator. ► We develop a mathematical model considering heat and mass transfer in the absorber. ► The simulation and experiment are carried out to reveal the system performance. ► COP becomes higher by improving the compressor and the solution heat exchanger.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2011.04.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2011-12, Vol.31 (17), p.3741-3747
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_926309435
source Access via ScienceDirect (Elsevier)
subjects Air conditioning
Air conditioning. Ventilation
Applied sciences
Computational efficiency
Computing time
Dehumidification
Desiccants
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat pump
Heat pumps
Heat transfer
Heating, air conditioning and ventilation
Liquid desiccant
Liquids
Mathematical analysis
Refrigerants
Simulation
Techniques, equipment. Control. Metering
Theoretical studies. Data and constants. Metering
Vapour compression heat pumps
title Hybrid liquid desiccant air-conditioning system: Experiments and simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20liquid%20desiccant%20air-conditioning%20system:%20Experiments%20and%20simulations&rft.jtitle=Applied%20thermal%20engineering&rft.au=Yamaguchi,%20Seiichi&rft.date=2011-12-01&rft.volume=31&rft.issue=17&rft.spage=3741&rft.epage=3747&rft.pages=3741-3747&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2011.04.009&rft_dat=%3Cproquest_cross%3E926309435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926309435&rft_id=info:pmid/&rft_els_id=S1359431111001979&rfr_iscdi=true