Heat release rate correlation and combustion noise in premixed flames
The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be u...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-08, Vol.681, p.80-115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Journal of fluid mechanics |
container_volume | 681 |
creator | SWAMINATHAN, N. XU, G. DOWLING, A. P. BALACHANDRAN, R. |
description | The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low. |
doi_str_mv | 10.1017/jfm.2011.232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_232</cupid><sourcerecordid>1642328278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-8002bf63c1385a0c28138b5a7be648edc5dc8a64a551de3647b00f2b89b75d113</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oAiiF7YepImbXYpYzph4I1eh9P0VDr6MZMW9N-buaEg4lXOC895kryMnXNIOPD8dl21iQDOE5GKAzbhMpvFeSbVIZsACBFzLuCYnXi_BuApzPIJWywJh8hRQ-gpcjhQZHsXMg5130XYlSG3xei_YtfXgaq7aOOord-pjKoGW_Kn7KjCxtPZ_pyyl_vF83wZr54eHud3q9gqgCHW4RVFlaWWp1ohWKHDUCjMC8qkptKq0mrMJCrFS0ozmRcAlSj0rMhVyXk6ZVc778b1byP5wbS1t9Q02FE_ejMTWQpaKx3I639JnslQkhb5Fr34ha770XXhHyaoJNepggDd7CDreu8dVWbj6hbdh-FgtuWbUL7Zlm-CN-CXeyd6i03lsLO1_94RUoKUSgUu2WuxLVxdvtLP5X-KPwFQWpG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885418350</pqid></control><display><type>article</type><title>Heat release rate correlation and combustion noise in premixed flames</title><source>Cambridge University Press Journals Complete</source><creator>SWAMINATHAN, N. ; XU, G. ; DOWLING, A. P. ; BALACHANDRAN, R.</creator><creatorcontrib>SWAMINATHAN, N. ; XU, G. ; DOWLING, A. P. ; BALACHANDRAN, R.</creatorcontrib><description>The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.232</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustics ; Applied sciences ; Combustion. Flame ; Computational fluid dynamics ; Correlation ; Emissions ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid mechanics ; Heat release rate ; Heat transfer ; Laminar flames ; Mathematical models ; Navier-Stokes equations ; Noise levels ; Premixed flames ; Reynolds number ; Sound pressure ; Spatial distribution ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2011-08, Vol.681, p.80-115</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-8002bf63c1385a0c28138b5a7be648edc5dc8a64a551de3647b00f2b89b75d113</citedby><cites>FETCH-LOGICAL-c500t-8002bf63c1385a0c28138b5a7be648edc5dc8a64a551de3647b00f2b89b75d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011002321/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SWAMINATHAN, N.</creatorcontrib><creatorcontrib>XU, G.</creatorcontrib><creatorcontrib>DOWLING, A. P.</creatorcontrib><creatorcontrib>BALACHANDRAN, R.</creatorcontrib><title>Heat release rate correlation and combustion noise in premixed flames</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low.</description><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Combustion. Flame</subject><subject>Computational fluid dynamics</subject><subject>Correlation</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Heat release rate</subject><subject>Heat transfer</subject><subject>Laminar flames</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Noise levels</subject><subject>Premixed flames</subject><subject>Reynolds number</subject><subject>Sound pressure</subject><subject>Spatial distribution</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oAiiF7YepImbXYpYzph4I1eh9P0VDr6MZMW9N-buaEg4lXOC895kryMnXNIOPD8dl21iQDOE5GKAzbhMpvFeSbVIZsACBFzLuCYnXi_BuApzPIJWywJh8hRQ-gpcjhQZHsXMg5130XYlSG3xei_YtfXgaq7aOOord-pjKoGW_Kn7KjCxtPZ_pyyl_vF83wZr54eHud3q9gqgCHW4RVFlaWWp1ohWKHDUCjMC8qkptKq0mrMJCrFS0ozmRcAlSj0rMhVyXk6ZVc778b1byP5wbS1t9Q02FE_ejMTWQpaKx3I639JnslQkhb5Fr34ha770XXhHyaoJNepggDd7CDreu8dVWbj6hbdh-FgtuWbUL7Zlm-CN-CXeyd6i03lsLO1_94RUoKUSgUu2WuxLVxdvtLP5X-KPwFQWpG4</recordid><startdate>20110825</startdate><enddate>20110825</enddate><creator>SWAMINATHAN, N.</creator><creator>XU, G.</creator><creator>DOWLING, A. P.</creator><creator>BALACHANDRAN, R.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110825</creationdate><title>Heat release rate correlation and combustion noise in premixed flames</title><author>SWAMINATHAN, N. ; XU, G. ; DOWLING, A. P. ; BALACHANDRAN, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-8002bf63c1385a0c28138b5a7be648edc5dc8a64a551de3647b00f2b89b75d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Combustion. Flame</topic><topic>Computational fluid dynamics</topic><topic>Correlation</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Heat release rate</topic><topic>Heat transfer</topic><topic>Laminar flames</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Noise levels</topic><topic>Premixed flames</topic><topic>Reynolds number</topic><topic>Sound pressure</topic><topic>Spatial distribution</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SWAMINATHAN, N.</creatorcontrib><creatorcontrib>XU, G.</creatorcontrib><creatorcontrib>DOWLING, A. P.</creatorcontrib><creatorcontrib>BALACHANDRAN, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SWAMINATHAN, N.</au><au>XU, G.</au><au>DOWLING, A. P.</au><au>BALACHANDRAN, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat release rate correlation and combustion noise in premixed flames</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-08-25</date><risdate>2011</risdate><volume>681</volume><spage>80</spage><epage>115</epage><pages>80-115</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.232</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2011-08, Vol.681, p.80-115 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_926308858 |
source | Cambridge University Press Journals Complete |
subjects | Acoustics Applied sciences Combustion. Flame Computational fluid dynamics Correlation Emissions Energy Energy. Thermal use of fuels Exact sciences and technology Fluid mechanics Heat release rate Heat transfer Laminar flames Mathematical models Navier-Stokes equations Noise levels Premixed flames Reynolds number Sound pressure Spatial distribution Theoretical studies Theoretical studies. Data and constants. Metering Turbulence Turbulent flow |
title | Heat release rate correlation and combustion noise in premixed flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20release%20rate%20correlation%20and%20combustion%20noise%20in%20premixed%20flames&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=SWAMINATHAN,%20N.&rft.date=2011-08-25&rft.volume=681&rft.spage=80&rft.epage=115&rft.pages=80-115&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.232&rft_dat=%3Cproquest_cross%3E1642328278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885418350&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_232&rfr_iscdi=true |