Maximal covering location problem (MCLP) with fuzzy travel times

► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2011-11, Vol.38 (12), p.14535-14541
Hauptverfasser: Davari, Soheil, Fazel Zarandi, Mohammad Hossein, Hemmati, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14541
container_issue 12
container_start_page 14535
container_title Expert systems with applications
container_volume 38
creator Davari, Soheil
Fazel Zarandi, Mohammad Hossein
Hemmati, Ahmad
description ► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.
doi_str_mv 10.1016/j.eswa.2011.05.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411008153</els_id><sourcerecordid>1701020173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5i8UYaEZzuxE4kBVPEltYIBZst1XsBV0hQ7bWl_Pa7KzPSWc6_ePYRcMkgZMHkzTzFsTMqBsRTyFAQ7IgNWKJFIVYpjMoAyV0nGVHZKzkKYAzAFoAbkbmp-XGsaars1erf4pE1nTe-6BV36btZgS0fT8eTtmm5c_0Xr1W63pb03a2xo71oM5-SkNk3Ai787JB-PD-_j52Ty-vQyvp8kVsi8T4zMa1S2MpxZNlNgclOBVAVTSphccDQZNyUiK4zkKstEARJrEDyrjZVqJobk6tAb3_peYeh164LFpjEL7FZBl1wKKCQvIjn6l4zLGURTSkSUH1DruxA81nrpow2_1Qz0Xqye671YvRerIddRbAzdHkIY564deh2sw4XFynm0va4691_8F1_CgDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701020173</pqid></control><display><type>article</type><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><source>Access via ScienceDirect (Elsevier)</source><creator>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</creator><creatorcontrib>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</creatorcontrib><description>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.05.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Computer simulation ; Credibility theory ; Facility location ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy travel times ; Mathematical models ; Maximal covering location problem (MCLP) ; Position (location) ; Simulated annealing ; Simulation</subject><ispartof>Expert systems with applications, 2011-11, Vol.38 (12), p.14535-14541</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</citedby><cites>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2011.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Davari, Soheil</creatorcontrib><creatorcontrib>Fazel Zarandi, Mohammad Hossein</creatorcontrib><creatorcontrib>Hemmati, Ahmad</creatorcontrib><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><title>Expert systems with applications</title><description>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Credibility theory</subject><subject>Facility location</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy travel times</subject><subject>Mathematical models</subject><subject>Maximal covering location problem (MCLP)</subject><subject>Position (location)</subject><subject>Simulated annealing</subject><subject>Simulation</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5i8UYaEZzuxE4kBVPEltYIBZst1XsBV0hQ7bWl_Pa7KzPSWc6_ePYRcMkgZMHkzTzFsTMqBsRTyFAQ7IgNWKJFIVYpjMoAyV0nGVHZKzkKYAzAFoAbkbmp-XGsaars1erf4pE1nTe-6BV36btZgS0fT8eTtmm5c_0Xr1W63pb03a2xo71oM5-SkNk3Ai787JB-PD-_j52Ty-vQyvp8kVsi8T4zMa1S2MpxZNlNgclOBVAVTSphccDQZNyUiK4zkKstEARJrEDyrjZVqJobk6tAb3_peYeh164LFpjEL7FZBl1wKKCQvIjn6l4zLGURTSkSUH1DruxA81nrpow2_1Qz0Xqye671YvRerIddRbAzdHkIY564deh2sw4XFynm0va4691_8F1_CgDQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Davari, Soheil</creator><creator>Fazel Zarandi, Mohammad Hossein</creator><creator>Hemmati, Ahmad</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><author>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Credibility theory</topic><topic>Facility location</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy travel times</topic><topic>Mathematical models</topic><topic>Maximal covering location problem (MCLP)</topic><topic>Position (location)</topic><topic>Simulated annealing</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davari, Soheil</creatorcontrib><creatorcontrib>Fazel Zarandi, Mohammad Hossein</creatorcontrib><creatorcontrib>Hemmati, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davari, Soheil</au><au>Fazel Zarandi, Mohammad Hossein</au><au>Hemmati, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal covering location problem (MCLP) with fuzzy travel times</atitle><jtitle>Expert systems with applications</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>38</volume><issue>12</issue><spage>14535</spage><epage>14541</epage><pages>14535-14541</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.05.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2011-11, Vol.38 (12), p.14535-14541
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_926308628
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Computer simulation
Credibility theory
Facility location
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy travel times
Mathematical models
Maximal covering location problem (MCLP)
Position (location)
Simulated annealing
Simulation
title Maximal covering location problem (MCLP) with fuzzy travel times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20covering%20location%20problem%20(MCLP)%20with%20fuzzy%20travel%20times&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Davari,%20Soheil&rft.date=2011-11-01&rft.volume=38&rft.issue=12&rft.spage=14535&rft.epage=14541&rft.pages=14535-14541&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.05.031&rft_dat=%3Cproquest_cross%3E1701020173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701020173&rft_id=info:pmid/&rft_els_id=S0957417411008153&rfr_iscdi=true