Maximal covering location problem (MCLP) with fuzzy travel times
► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed. This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fu...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2011-11, Vol.38 (12), p.14535-14541 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14541 |
---|---|
container_issue | 12 |
container_start_page | 14535 |
container_title | Expert systems with applications |
container_volume | 38 |
creator | Davari, Soheil Fazel Zarandi, Mohammad Hossein Hemmati, Ahmad |
description | ► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed.
This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions. |
doi_str_mv | 10.1016/j.eswa.2011.05.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411008153</els_id><sourcerecordid>1701020173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5i8UYaEZzuxE4kBVPEltYIBZst1XsBV0hQ7bWl_Pa7KzPSWc6_ePYRcMkgZMHkzTzFsTMqBsRTyFAQ7IgNWKJFIVYpjMoAyV0nGVHZKzkKYAzAFoAbkbmp-XGsaars1erf4pE1nTe-6BV36btZgS0fT8eTtmm5c_0Xr1W63pb03a2xo71oM5-SkNk3Ai787JB-PD-_j52Ty-vQyvp8kVsi8T4zMa1S2MpxZNlNgclOBVAVTSphccDQZNyUiK4zkKstEARJrEDyrjZVqJobk6tAb3_peYeh164LFpjEL7FZBl1wKKCQvIjn6l4zLGURTSkSUH1DruxA81nrpow2_1Qz0Xqye671YvRerIddRbAzdHkIY564deh2sw4XFynm0va4691_8F1_CgDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701020173</pqid></control><display><type>article</type><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><source>Access via ScienceDirect (Elsevier)</source><creator>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</creator><creatorcontrib>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</creatorcontrib><description>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed.
This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.05.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Computer simulation ; Credibility theory ; Facility location ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy travel times ; Mathematical models ; Maximal covering location problem (MCLP) ; Position (location) ; Simulated annealing ; Simulation</subject><ispartof>Expert systems with applications, 2011-11, Vol.38 (12), p.14535-14541</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</citedby><cites>FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2011.05.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Davari, Soheil</creatorcontrib><creatorcontrib>Fazel Zarandi, Mohammad Hossein</creatorcontrib><creatorcontrib>Hemmati, Ahmad</creatorcontrib><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><title>Expert systems with applications</title><description>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed.
This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Credibility theory</subject><subject>Facility location</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy travel times</subject><subject>Mathematical models</subject><subject>Maximal covering location problem (MCLP)</subject><subject>Position (location)</subject><subject>Simulated annealing</subject><subject>Simulation</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5i8UYaEZzuxE4kBVPEltYIBZst1XsBV0hQ7bWl_Pa7KzPSWc6_ePYRcMkgZMHkzTzFsTMqBsRTyFAQ7IgNWKJFIVYpjMoAyV0nGVHZKzkKYAzAFoAbkbmp-XGsaars1erf4pE1nTe-6BV36btZgS0fT8eTtmm5c_0Xr1W63pb03a2xo71oM5-SkNk3Ai787JB-PD-_j52Ty-vQyvp8kVsi8T4zMa1S2MpxZNlNgclOBVAVTSphccDQZNyUiK4zkKstEARJrEDyrjZVqJobk6tAb3_peYeh164LFpjEL7FZBl1wKKCQvIjn6l4zLGURTSkSUH1DruxA81nrpow2_1Qz0Xqye671YvRerIddRbAzdHkIY564deh2sw4XFynm0va4691_8F1_CgDQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Davari, Soheil</creator><creator>Fazel Zarandi, Mohammad Hossein</creator><creator>Hemmati, Ahmad</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Maximal covering location problem (MCLP) with fuzzy travel times</title><author>Davari, Soheil ; Fazel Zarandi, Mohammad Hossein ; Hemmati, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a65fe7cda21c1b70a5ad06781773a532ea42a9ee18a627443806ef0324fac67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Credibility theory</topic><topic>Facility location</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy travel times</topic><topic>Mathematical models</topic><topic>Maximal covering location problem (MCLP)</topic><topic>Position (location)</topic><topic>Simulated annealing</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davari, Soheil</creatorcontrib><creatorcontrib>Fazel Zarandi, Mohammad Hossein</creatorcontrib><creatorcontrib>Hemmati, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davari, Soheil</au><au>Fazel Zarandi, Mohammad Hossein</au><au>Hemmati, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal covering location problem (MCLP) with fuzzy travel times</atitle><jtitle>Expert systems with applications</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>38</volume><issue>12</issue><spage>14535</spage><epage>14541</epage><pages>14535-14541</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► A maximal covering location problem is studied. ► Travel times are fuzzy variables. ► Simulation-embedded simulated annealing is proposed.
This paper presents a fuzzy maximal covering location problem (FMCLP) in which travel time between any pair of nodes is considered to be a fuzzy variable. A fuzzy expected value maximization model is designed for such a problem. Moreover, a hybrid algorithm of fuzzy simulation and simulated annealing (SA) is used to solve FMCLP. Some numerical examples are presented, solved and analyzed to show the performance of the proposed algorithm. The results show that the proposed SA finds solutions with objective values no worse than 1.35% below the optimal solution. Furthermore, the simulation-embedded simulated annealing is robust in finding solutions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.05.031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2011-11, Vol.38 (12), p.14535-14541 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_926308628 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Computer simulation Credibility theory Facility location Fuzzy Fuzzy logic Fuzzy set theory Fuzzy travel times Mathematical models Maximal covering location problem (MCLP) Position (location) Simulated annealing Simulation |
title | Maximal covering location problem (MCLP) with fuzzy travel times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20covering%20location%20problem%20(MCLP)%20with%20fuzzy%20travel%20times&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Davari,%20Soheil&rft.date=2011-11-01&rft.volume=38&rft.issue=12&rft.spage=14535&rft.epage=14541&rft.pages=14535-14541&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.05.031&rft_dat=%3Cproquest_cross%3E1701020173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701020173&rft_id=info:pmid/&rft_els_id=S0957417411008153&rfr_iscdi=true |