A New Probabilistic Transformation in Generalized Power Space

The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2011-08, Vol.24 (4), p.449-460
Hauptverfasser: HU, Lifang, HE, You, GUAN, Xin, DENG, Yong, HAN, Deqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 4
container_start_page 449
container_title Chinese journal of aeronautics
container_volume 24
creator HU, Lifang
HE, You
GUAN, Xin
DENG, Yong
HAN, Deqiang
description The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.
doi_str_mv 10.1016/S1000-9361(11)60052-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39113786</cqvip_id><els_id>S1000936111600526</els_id><sourcerecordid>926308005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhnNQsFZ_grCe1MNqZtPNJgeRUrQKooXWc8hmZ2tkm7TJ1qK_3q2VXoWBgeH9YB5CzoBeAwV-MwVKaSoZh0uAK05pnqX8gPT25yNyHOMHpUwWQHvkdpi84CaZBF_q0jY2ttYks6BdrH1Y6NZ6l1iXjNFh0I39xiqZ-A2GZLrUBk_IYa2biKd_u0_eHu5no8f0-XX8NBo-p2YAgzatDRrDuilyEGUuIZdZVmWyoHXJhdS6RJC8EIIKXdRmwKtKQAamglxwkWvWJxe73GXwqzXGVi1sNNg02qFfRyUzzqjonu2U-U5pgo8xYK2WwS50-FJA1ZaQ-iWktigUgPolpHjnu9v5sHvj02JQ0Vh0Bisb0LSq8vbfhPO_5nfv5ivr5vtqJgFYITj7AVgReY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926308005</pqid></control><display><type>article</type><title>A New Probabilistic Transformation in Generalized Power Space</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</creator><creatorcontrib>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</creatorcontrib><description>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/S1000-9361(11)60052-6</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Construction ; Dempster-Shafer theory ; Frames ; generalized power space ; Human ; information fusion ; interval value ; Judgments ; Mapping ; Probabilistic methods ; Probability theory ; Transformations ; uncertainty ; 不确定性 ; 主观判断 ; 多传感器 ; 广义功率 ; 改造工程 ; 概率测度 ; 空间 ; 跟踪系统</subject><ispartof>Chinese journal of aeronautics, 2011-08, Vol.24 (4), p.449-460</ispartof><rights>2011 Chinese Journal of Aeronautics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</citedby><cites>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83889X/83889X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1000-9361(11)60052-6$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>HU, Lifang</creatorcontrib><creatorcontrib>HE, You</creatorcontrib><creatorcontrib>GUAN, Xin</creatorcontrib><creatorcontrib>DENG, Yong</creatorcontrib><creatorcontrib>HAN, Deqiang</creatorcontrib><title>A New Probabilistic Transformation in Generalized Power Space</title><title>Chinese journal of aeronautics</title><addtitle>Chinese Journal of Aeronautics</addtitle><description>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</description><subject>Construction</subject><subject>Dempster-Shafer theory</subject><subject>Frames</subject><subject>generalized power space</subject><subject>Human</subject><subject>information fusion</subject><subject>interval value</subject><subject>Judgments</subject><subject>Mapping</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Transformations</subject><subject>uncertainty</subject><subject>不确定性</subject><subject>主观判断</subject><subject>多传感器</subject><subject>广义功率</subject><subject>改造工程</subject><subject>概率测度</subject><subject>空间</subject><subject>跟踪系统</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhnNQsFZ_grCe1MNqZtPNJgeRUrQKooXWc8hmZ2tkm7TJ1qK_3q2VXoWBgeH9YB5CzoBeAwV-MwVKaSoZh0uAK05pnqX8gPT25yNyHOMHpUwWQHvkdpi84CaZBF_q0jY2ttYks6BdrH1Y6NZ6l1iXjNFh0I39xiqZ-A2GZLrUBk_IYa2biKd_u0_eHu5no8f0-XX8NBo-p2YAgzatDRrDuilyEGUuIZdZVmWyoHXJhdS6RJC8EIIKXdRmwKtKQAamglxwkWvWJxe73GXwqzXGVi1sNNg02qFfRyUzzqjonu2U-U5pgo8xYK2WwS50-FJA1ZaQ-iWktigUgPolpHjnu9v5sHvj02JQ0Vh0Bisb0LSq8vbfhPO_5nfv5ivr5vtqJgFYITj7AVgReY0</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>HU, Lifang</creator><creator>HE, You</creator><creator>GUAN, Xin</creator><creator>DENG, Yong</creator><creator>HAN, Deqiang</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>A New Probabilistic Transformation in Generalized Power Space</title><author>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Construction</topic><topic>Dempster-Shafer theory</topic><topic>Frames</topic><topic>generalized power space</topic><topic>Human</topic><topic>information fusion</topic><topic>interval value</topic><topic>Judgments</topic><topic>Mapping</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Transformations</topic><topic>uncertainty</topic><topic>不确定性</topic><topic>主观判断</topic><topic>多传感器</topic><topic>广义功率</topic><topic>改造工程</topic><topic>概率测度</topic><topic>空间</topic><topic>跟踪系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, Lifang</creatorcontrib><creatorcontrib>HE, You</creatorcontrib><creatorcontrib>GUAN, Xin</creatorcontrib><creatorcontrib>DENG, Yong</creatorcontrib><creatorcontrib>HAN, Deqiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, Lifang</au><au>HE, You</au><au>GUAN, Xin</au><au>DENG, Yong</au><au>HAN, Deqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Probabilistic Transformation in Generalized Power Space</atitle><jtitle>Chinese journal of aeronautics</jtitle><addtitle>Chinese Journal of Aeronautics</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>449</spage><epage>460</epage><pages>449-460</pages><issn>1000-9361</issn><abstract>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1000-9361(11)60052-6</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2011-08, Vol.24 (4), p.449-460
issn 1000-9361
language eng
recordid cdi_proquest_miscellaneous_926308005
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Construction
Dempster-Shafer theory
Frames
generalized power space
Human
information fusion
interval value
Judgments
Mapping
Probabilistic methods
Probability theory
Transformations
uncertainty
不确定性
主观判断
多传感器
广义功率
改造工程
概率测度
空间
跟踪系统
title A New Probabilistic Transformation in Generalized Power Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Probabilistic%20Transformation%20in%20Generalized%20Power%20Space&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=HU,%20Lifang&rft.date=2011-08-01&rft.volume=24&rft.issue=4&rft.spage=449&rft.epage=460&rft.pages=449-460&rft.issn=1000-9361&rft_id=info:doi/10.1016/S1000-9361(11)60052-6&rft_dat=%3Cproquest_cross%3E926308005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926308005&rft_id=info:pmid/&rft_cqvip_id=39113786&rft_els_id=S1000936111600526&rfr_iscdi=true