A New Probabilistic Transformation in Generalized Power Space
The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of be...
Gespeichert in:
Veröffentlicht in: | Chinese journal of aeronautics 2011-08, Vol.24 (4), p.449-460 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 4 |
container_start_page | 449 |
container_title | Chinese journal of aeronautics |
container_volume | 24 |
creator | HU, Lifang HE, You GUAN, Xin DENG, Yong HAN, Deqiang |
description | The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler. |
doi_str_mv | 10.1016/S1000-9361(11)60052-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39113786</cqvip_id><els_id>S1000936111600526</els_id><sourcerecordid>926308005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhnNQsFZ_grCe1MNqZtPNJgeRUrQKooXWc8hmZ2tkm7TJ1qK_3q2VXoWBgeH9YB5CzoBeAwV-MwVKaSoZh0uAK05pnqX8gPT25yNyHOMHpUwWQHvkdpi84CaZBF_q0jY2ttYks6BdrH1Y6NZ6l1iXjNFh0I39xiqZ-A2GZLrUBk_IYa2biKd_u0_eHu5no8f0-XX8NBo-p2YAgzatDRrDuilyEGUuIZdZVmWyoHXJhdS6RJC8EIIKXdRmwKtKQAamglxwkWvWJxe73GXwqzXGVi1sNNg02qFfRyUzzqjonu2U-U5pgo8xYK2WwS50-FJA1ZaQ-iWktigUgPolpHjnu9v5sHvj02JQ0Vh0Bisb0LSq8vbfhPO_5nfv5ivr5vtqJgFYITj7AVgReY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926308005</pqid></control><display><type>article</type><title>A New Probabilistic Transformation in Generalized Power Space</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</creator><creatorcontrib>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</creatorcontrib><description>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/S1000-9361(11)60052-6</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Construction ; Dempster-Shafer theory ; Frames ; generalized power space ; Human ; information fusion ; interval value ; Judgments ; Mapping ; Probabilistic methods ; Probability theory ; Transformations ; uncertainty ; 不确定性 ; 主观判断 ; 多传感器 ; 广义功率 ; 改造工程 ; 概率测度 ; 空间 ; 跟踪系统</subject><ispartof>Chinese journal of aeronautics, 2011-08, Vol.24 (4), p.449-460</ispartof><rights>2011 Chinese Journal of Aeronautics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</citedby><cites>FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83889X/83889X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1000-9361(11)60052-6$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>HU, Lifang</creatorcontrib><creatorcontrib>HE, You</creatorcontrib><creatorcontrib>GUAN, Xin</creatorcontrib><creatorcontrib>DENG, Yong</creatorcontrib><creatorcontrib>HAN, Deqiang</creatorcontrib><title>A New Probabilistic Transformation in Generalized Power Space</title><title>Chinese journal of aeronautics</title><addtitle>Chinese Journal of Aeronautics</addtitle><description>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</description><subject>Construction</subject><subject>Dempster-Shafer theory</subject><subject>Frames</subject><subject>generalized power space</subject><subject>Human</subject><subject>information fusion</subject><subject>interval value</subject><subject>Judgments</subject><subject>Mapping</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Transformations</subject><subject>uncertainty</subject><subject>不确定性</subject><subject>主观判断</subject><subject>多传感器</subject><subject>广义功率</subject><subject>改造工程</subject><subject>概率测度</subject><subject>空间</subject><subject>跟踪系统</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhnNQsFZ_grCe1MNqZtPNJgeRUrQKooXWc8hmZ2tkm7TJ1qK_3q2VXoWBgeH9YB5CzoBeAwV-MwVKaSoZh0uAK05pnqX8gPT25yNyHOMHpUwWQHvkdpi84CaZBF_q0jY2ttYks6BdrH1Y6NZ6l1iXjNFh0I39xiqZ-A2GZLrUBk_IYa2biKd_u0_eHu5no8f0-XX8NBo-p2YAgzatDRrDuilyEGUuIZdZVmWyoHXJhdS6RJC8EIIKXdRmwKtKQAamglxwkWvWJxe73GXwqzXGVi1sNNg02qFfRyUzzqjonu2U-U5pgo8xYK2WwS50-FJA1ZaQ-iWktigUgPolpHjnu9v5sHvj02JQ0Vh0Bisb0LSq8vbfhPO_5nfv5ivr5vtqJgFYITj7AVgReY0</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>HU, Lifang</creator><creator>HE, You</creator><creator>GUAN, Xin</creator><creator>DENG, Yong</creator><creator>HAN, Deqiang</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>A New Probabilistic Transformation in Generalized Power Space</title><author>HU, Lifang ; HE, You ; GUAN, Xin ; DENG, Yong ; HAN, Deqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-fcecc3cc37518b5915922d2970fb689aabe19678808a7fc46dd8121cd158685a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Construction</topic><topic>Dempster-Shafer theory</topic><topic>Frames</topic><topic>generalized power space</topic><topic>Human</topic><topic>information fusion</topic><topic>interval value</topic><topic>Judgments</topic><topic>Mapping</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Transformations</topic><topic>uncertainty</topic><topic>不确定性</topic><topic>主观判断</topic><topic>多传感器</topic><topic>广义功率</topic><topic>改造工程</topic><topic>概率测度</topic><topic>空间</topic><topic>跟踪系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, Lifang</creatorcontrib><creatorcontrib>HE, You</creatorcontrib><creatorcontrib>GUAN, Xin</creatorcontrib><creatorcontrib>DENG, Yong</creatorcontrib><creatorcontrib>HAN, Deqiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, Lifang</au><au>HE, You</au><au>GUAN, Xin</au><au>DENG, Yong</au><au>HAN, Deqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Probabilistic Transformation in Generalized Power Space</atitle><jtitle>Chinese journal of aeronautics</jtitle><addtitle>Chinese Journal of Aeronautics</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>449</spage><epage>460</epage><pages>449-460</pages><issn>1000-9361</issn><abstract>The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) decision, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions, especially when precise belief structures are not always available due to the existence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1000-9361(11)60052-6</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9361 |
ispartof | Chinese journal of aeronautics, 2011-08, Vol.24 (4), p.449-460 |
issn | 1000-9361 |
language | eng |
recordid | cdi_proquest_miscellaneous_926308005 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Construction Dempster-Shafer theory Frames generalized power space Human information fusion interval value Judgments Mapping Probabilistic methods Probability theory Transformations uncertainty 不确定性 主观判断 多传感器 广义功率 改造工程 概率测度 空间 跟踪系统 |
title | A New Probabilistic Transformation in Generalized Power Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Probabilistic%20Transformation%20in%20Generalized%20Power%20Space&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=HU,%20Lifang&rft.date=2011-08-01&rft.volume=24&rft.issue=4&rft.spage=449&rft.epage=460&rft.pages=449-460&rft.issn=1000-9361&rft_id=info:doi/10.1016/S1000-9361(11)60052-6&rft_dat=%3Cproquest_cross%3E926308005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926308005&rft_id=info:pmid/&rft_cqvip_id=39113786&rft_els_id=S1000936111600526&rfr_iscdi=true |