Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation

A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-11, Vol.196 (21), p.8925-8930
Hauptverfasser: Stassi, A., Gatto, I., Passalacqua, E., Antonucci, V., Arico, A.S., Merlo, L., Oldani, C., Pagano, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8930
container_issue 21
container_start_page 8925
container_title Journal of power sources
container_volume 196
creator Stassi, A.
Gatto, I.
Passalacqua, E.
Antonucci, V.
Arico, A.S.
Merlo, L.
Oldani, C.
Pagano, E.
description A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.
doi_str_mv 10.1016/j.jpowsour.2010.12.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926303897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311000115</els_id><sourcerecordid>926303897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-5d8ae1d99e4ddedc2af4edf2a709acf10548f3dd962eeac6e47b108c3bf272653</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVGUSplM8woRm6grTwH_YO9aRW1SaaR2kawRA5cMI-zrgN0qD5L3Lc6ks-0Kgb5zzz0cQq4523DGm8-HzWHEPwnnuBFseRQb1lZnZMVbWRZC1vU5WbFStoWUdXlBLlM6MMY4l2xFXn9BdBh7PRigBvtRR59woOhowOGJ6sHStMc4FcnbTOy1H-iYNWHGiGkODgdvaA_9LuoBEs3D6N4_7ekEfeb0NEegI4aXHiKFAGaK-TLBSULdDIEaCIHim8Dj8JF8cDokuHo_1-Tx-7eH2_ti-_Pux-3XbWGqlk9FbVsN3HYdVNaCNUK7CqwTWrJOG8dZXbWutLZrBIA2DVRyx1lryp0TUjR1uSafjnPHiM8zpEn1Pi2r5L1wTqoTTcnKtpOZbI6kyalTBKfG6HsdXxRnaqlBHdS_GtRSg-JC5Rqy8ObdQiejg8uRjU8ntaiqTtZyMfhy5CDn_e0hqmQ85Fasj_nTlEX_P6u_k2KoPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926303897</pqid></control><display><type>article</type><title>Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation</title><source>Elsevier ScienceDirect Journals</source><creator>Stassi, A. ; Gatto, I. ; Passalacqua, E. ; Antonucci, V. ; Arico, A.S. ; Merlo, L. ; Oldani, C. ; Pagano, E.</creator><creatorcontrib>Stassi, A. ; Gatto, I. ; Passalacqua, E. ; Antonucci, V. ; Arico, A.S. ; Merlo, L. ; Oldani, C. ; Pagano, E.</creatorcontrib><description>A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.12.084</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Aquivion ; Automotive applications ; Carbon ; Chains (polymeric) ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrocatalysts ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolytes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Ground, air and sea transportation, marine construction ; High temperature ; Membranes ; Nanostructure ; PEM fuel cell ; Platinum ; Polymer electrolyte membrane ; Road transportation and traffic ; Short-side chain</subject><ispartof>Journal of power sources, 2011-11, Vol.196 (21), p.8925-8930</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-5d8ae1d99e4ddedc2af4edf2a709acf10548f3dd962eeac6e47b108c3bf272653</citedby><cites>FETCH-LOGICAL-c481t-5d8ae1d99e4ddedc2af4edf2a709acf10548f3dd962eeac6e47b108c3bf272653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775311000115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24497577$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stassi, A.</creatorcontrib><creatorcontrib>Gatto, I.</creatorcontrib><creatorcontrib>Passalacqua, E.</creatorcontrib><creatorcontrib>Antonucci, V.</creatorcontrib><creatorcontrib>Arico, A.S.</creatorcontrib><creatorcontrib>Merlo, L.</creatorcontrib><creatorcontrib>Oldani, C.</creatorcontrib><creatorcontrib>Pagano, E.</creatorcontrib><title>Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation</title><title>Journal of power sources</title><description>A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.</description><subject>Applied sciences</subject><subject>Aquivion</subject><subject>Automotive applications</subject><subject>Carbon</subject><subject>Chains (polymeric)</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrocatalysts</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>High temperature</subject><subject>Membranes</subject><subject>Nanostructure</subject><subject>PEM fuel cell</subject><subject>Platinum</subject><subject>Polymer electrolyte membrane</subject><subject>Road transportation and traffic</subject><subject>Short-side chain</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVGUSplM8woRm6grTwH_YO9aRW1SaaR2kawRA5cMI-zrgN0qD5L3Lc6ks-0Kgb5zzz0cQq4523DGm8-HzWHEPwnnuBFseRQb1lZnZMVbWRZC1vU5WbFStoWUdXlBLlM6MMY4l2xFXn9BdBh7PRigBvtRR59woOhowOGJ6sHStMc4FcnbTOy1H-iYNWHGiGkODgdvaA_9LuoBEs3D6N4_7ekEfeb0NEegI4aXHiKFAGaK-TLBSULdDIEaCIHim8Dj8JF8cDokuHo_1-Tx-7eH2_ti-_Pux-3XbWGqlk9FbVsN3HYdVNaCNUK7CqwTWrJOG8dZXbWutLZrBIA2DVRyx1lryp0TUjR1uSafjnPHiM8zpEn1Pi2r5L1wTqoTTcnKtpOZbI6kyalTBKfG6HsdXxRnaqlBHdS_GtRSg-JC5Rqy8ObdQiejg8uRjU8ntaiqTtZyMfhy5CDn_e0hqmQ85Fasj_nTlEX_P6u_k2KoPQ</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Stassi, A.</creator><creator>Gatto, I.</creator><creator>Passalacqua, E.</creator><creator>Antonucci, V.</creator><creator>Arico, A.S.</creator><creator>Merlo, L.</creator><creator>Oldani, C.</creator><creator>Pagano, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation</title><author>Stassi, A. ; Gatto, I. ; Passalacqua, E. ; Antonucci, V. ; Arico, A.S. ; Merlo, L. ; Oldani, C. ; Pagano, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-5d8ae1d99e4ddedc2af4edf2a709acf10548f3dd962eeac6e47b108c3bf272653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Aquivion</topic><topic>Automotive applications</topic><topic>Carbon</topic><topic>Chains (polymeric)</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrocatalysts</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>High temperature</topic><topic>Membranes</topic><topic>Nanostructure</topic><topic>PEM fuel cell</topic><topic>Platinum</topic><topic>Polymer electrolyte membrane</topic><topic>Road transportation and traffic</topic><topic>Short-side chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stassi, A.</creatorcontrib><creatorcontrib>Gatto, I.</creatorcontrib><creatorcontrib>Passalacqua, E.</creatorcontrib><creatorcontrib>Antonucci, V.</creatorcontrib><creatorcontrib>Arico, A.S.</creatorcontrib><creatorcontrib>Merlo, L.</creatorcontrib><creatorcontrib>Oldani, C.</creatorcontrib><creatorcontrib>Pagano, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stassi, A.</au><au>Gatto, I.</au><au>Passalacqua, E.</au><au>Antonucci, V.</au><au>Arico, A.S.</au><au>Merlo, L.</au><au>Oldani, C.</au><au>Pagano, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation</atitle><jtitle>Journal of power sources</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>196</volume><issue>21</issue><spage>8925</spage><epage>8930</epage><pages>8925-8930</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.12.084</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-11, Vol.196 (21), p.8925-8930
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_926303897
source Elsevier ScienceDirect Journals
subjects Applied sciences
Aquivion
Automotive applications
Carbon
Chains (polymeric)
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrocatalysts
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrolytes
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Ground, air and sea transportation, marine construction
High temperature
Membranes
Nanostructure
PEM fuel cell
Platinum
Polymer electrolyte membrane
Road transportation and traffic
Short-side chain
title Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20comparison%20of%20long%20and%20short-side%20chain%20perfluorosulfonic%20membranes%20for%20high%20temperature%20polymer%20electrolyte%20membrane%20fuel%20cell%20operation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Stassi,%20A.&rft.date=2011-11-01&rft.volume=196&rft.issue=21&rft.spage=8925&rft.epage=8930&rft.pages=8925-8930&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.12.084&rft_dat=%3Cproquest_cross%3E926303897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926303897&rft_id=info:pmid/&rft_els_id=S0378775311000115&rfr_iscdi=true