Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials
Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2011-11, Vol.196 (21), p.9046-9050 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9050 |
---|---|
container_issue | 21 |
container_start_page | 9046 |
container_title | Journal of power sources |
container_volume | 196 |
creator | Gödeke, Dieter Dahlmann, Ulf |
description | Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability.
SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO–Al
2O
3–BaO–SiO
2–B
2O
3.
In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000
h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods.
Results show that after thermal aging of the glasses barium silicates accompanied by barium–magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations. |
doi_str_mv | 10.1016/j.jpowsour.2010.12.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926303870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310022627</els_id><sourcerecordid>926303870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d192ac37c55425fbc8ed815ff31d7afe4af944673e314c9f26b2236282b6f8f33</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxSMEEkvhKyBfEKds_SeOkxuoooBUiQNwtib2uPXKSRZPUlgOfHYcbcuV05NGvzdv5lXVa8H3gov28rA_HOefNK95L_k2lHuumyfVTnRG1dJo_bTacWW62hitnlcviA6ccyEM31V_vi6rP7F5YssdMpdPtEBK8TcsscwGvIP7WDYzmPxG5BESK8gQU1yKLbDbBES1wwxjdMRWQs-AGM0pejb_ih5ZWDExhynVhJDidMtGWDBHSPSyehaK4KsHvai-X3_4dvWpvvny8fPV-5vaNUIvtRe9BKeM07qROgyuQ98JHYIS3kDABkLfNK1RqETj-iDbQUrVyk4ObeiCUhfV2_PeY55_rEiLHSNtJ8GE80q2l63iqjO8kO2ZdHkmyhjsMccR8skKbre-7cE-9m23vq2QtvRdjG8eIoAcpJBhcpH-uWXT9Eb3snDvzhyWf-8jZksu4uTQx4xusX6O_4v6C0imnSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926303870</pqid></control><display><type>article</type><title>Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials</title><source>Elsevier ScienceDirect Journals</source><creator>Gödeke, Dieter ; Dahlmann, Ulf</creator><creatorcontrib>Gödeke, Dieter ; Dahlmann, Ulf</creatorcontrib><description>Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability.
SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO–Al
2O
3–BaO–SiO
2–B
2O
3.
In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000
h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods.
Results show that after thermal aging of the glasses barium silicates accompanied by barium–magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.12.054</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Crystallization ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Glass ; Glass ceramics ; Ingredients ; Operating temperature ; Phases ; Silicates ; SOFC-sealing glass ; Solid oxide fuel cells ; Thermal expansion ; Thermal stability</subject><ispartof>Journal of power sources, 2011-11, Vol.196 (21), p.9046-9050</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d192ac37c55425fbc8ed815ff31d7afe4af944673e314c9f26b2236282b6f8f33</citedby><cites>FETCH-LOGICAL-c415t-d192ac37c55425fbc8ed815ff31d7afe4af944673e314c9f26b2236282b6f8f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775310022627$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24497592$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gödeke, Dieter</creatorcontrib><creatorcontrib>Dahlmann, Ulf</creatorcontrib><title>Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials</title><title>Journal of power sources</title><description>Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability.
SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO–Al
2O
3–BaO–SiO
2–B
2O
3.
In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000
h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods.
Results show that after thermal aging of the glasses barium silicates accompanied by barium–magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Glass</subject><subject>Glass ceramics</subject><subject>Ingredients</subject><subject>Operating temperature</subject><subject>Phases</subject><subject>Silicates</subject><subject>SOFC-sealing glass</subject><subject>Solid oxide fuel cells</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxSMEEkvhKyBfEKds_SeOkxuoooBUiQNwtib2uPXKSRZPUlgOfHYcbcuV05NGvzdv5lXVa8H3gov28rA_HOefNK95L_k2lHuumyfVTnRG1dJo_bTacWW62hitnlcviA6ccyEM31V_vi6rP7F5YssdMpdPtEBK8TcsscwGvIP7WDYzmPxG5BESK8gQU1yKLbDbBES1wwxjdMRWQs-AGM0pejb_ih5ZWDExhynVhJDidMtGWDBHSPSyehaK4KsHvai-X3_4dvWpvvny8fPV-5vaNUIvtRe9BKeM07qROgyuQ98JHYIS3kDABkLfNK1RqETj-iDbQUrVyk4ObeiCUhfV2_PeY55_rEiLHSNtJ8GE80q2l63iqjO8kO2ZdHkmyhjsMccR8skKbre-7cE-9m23vq2QtvRdjG8eIoAcpJBhcpH-uWXT9Eb3snDvzhyWf-8jZksu4uTQx4xusX6O_4v6C0imnSw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Gödeke, Dieter</creator><creator>Dahlmann, Ulf</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials</title><author>Gödeke, Dieter ; Dahlmann, Ulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d192ac37c55425fbc8ed815ff31d7afe4af944673e314c9f26b2236282b6f8f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Glass</topic><topic>Glass ceramics</topic><topic>Ingredients</topic><topic>Operating temperature</topic><topic>Phases</topic><topic>Silicates</topic><topic>SOFC-sealing glass</topic><topic>Solid oxide fuel cells</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gödeke, Dieter</creatorcontrib><creatorcontrib>Dahlmann, Ulf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gödeke, Dieter</au><au>Dahlmann, Ulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials</atitle><jtitle>Journal of power sources</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>196</volume><issue>21</issue><spage>9046</spage><epage>9050</epage><pages>9046-9050</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Glass ceramics are commonly used as sealing materials for planar solid oxide fuel cells (SOFCs). The major requirements of stack and module builders for these materials are the stability of the coefficient of thermal expansion (CTE), excellent bonding (sticking) behaviour and the absence of volatile ingredients, which can lead to changes of the material properties and the sealing ability.
SCHOTT Electronic Packaging has developed special glasses and glass-ceramics for various solid oxide fuel cell designs and operating temperatures. The glass compositions are based on the system MgO–Al
2O
3–BaO–SiO
2–B
2O
3.
In this study the evaluation of the developed materials was done by high temperature aging tests for up to 1000
h, high temperature XRD-studies and Rietveld calculations, combined with scanning-electron microscope analysis. Samples of these aged samples were chemically analysed by XRD and wet chemical methods.
Results show that after thermal aging of the glasses barium silicates accompanied by barium–magnesium silicates are the major crystalline phases of the glasses. The crystal phases remain stable during high temperature aging tests, indicating a low driving force of material change. The experimental results are compared to phase diagrams by phenomenological and thermochemical considerations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.12.054</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2011-11, Vol.196 (21), p.9046-9050 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_926303870 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Crystallization Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Glass Glass ceramics Ingredients Operating temperature Phases Silicates SOFC-sealing glass Solid oxide fuel cells Thermal expansion Thermal stability |
title | Study on the crystallization behaviour and thermal stability of glass-ceramics used as solid oxide fuel cell-sealing materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20crystallization%20behaviour%20and%20thermal%20stability%20of%20glass-ceramics%20used%20as%20solid%20oxide%20fuel%20cell-sealing%20materials&rft.jtitle=Journal%20of%20power%20sources&rft.au=G%C3%B6deke,%20Dieter&rft.date=2011-11-01&rft.volume=196&rft.issue=21&rft.spage=9046&rft.epage=9050&rft.pages=9046-9050&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.12.054&rft_dat=%3Cproquest_cross%3E926303870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926303870&rft_id=info:pmid/&rft_els_id=S0378775310022627&rfr_iscdi=true |