A deterministic approach to throughput scaling in wireless networks
We address the problem of how throughput in a wireless network scales as the number of users grows. Following the model of Gupta and Kumar, we consider n identical nodes placed in a fixed area. Pairs of transmitters and receivers wish to communicate but are subject to interference from other nodes....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-06, Vol.50 (6), p.1041-1049 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem of how throughput in a wireless network scales as the number of users grows. Following the model of Gupta and Kumar, we consider n identical nodes placed in a fixed area. Pairs of transmitters and receivers wish to communicate but are subject to interference from other nodes. Throughput is measured in bit-meters per second. We provide a very elementary deterministic approach that gives achievability results in terms of three key properties of the node locations. As a special case, we obtain /spl Omega/(/spl radic/n) throughput for a general class of network configurations in a fixed area. Results for random node locations in a fixed area can also be derived as special cases of the general result by verifying the growth rate of three parameters. For example, as a simple corollary of our result we obtain a stronger (almost sure) version of the /spl radic/n//spl radic/(logn) throughput for random node locations in a fixed area obtained by Gupta and Kumar. Results for some other interesting non-independent and identically distributed (i.i.d.) node distributions are also provided. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2004.828055 |