Optimal smoothing and interpolating splines with constraints

This paper considers the problem for designing optimal smoothing and interpolating splines with equality and/or inequality constraints. The splines are constituted by employing normalized uniform B-splines as the basis functions, namely as weighted sum of shifted B-splines of degree k. Then a centra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-11, Vol.218 (5), p.1831-1844
Hauptverfasser: Kano, Hiroyuki, Fujioka, Hiroyuki, Martin, Clyde F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1844
container_issue 5
container_start_page 1831
container_title Applied mathematics and computation
container_volume 218
creator Kano, Hiroyuki
Fujioka, Hiroyuki
Martin, Clyde F.
description This paper considers the problem for designing optimal smoothing and interpolating splines with equality and/or inequality constraints. The splines are constituted by employing normalized uniform B-splines as the basis functions, namely as weighted sum of shifted B-splines of degree k. Then a central issue is to determine an optimal vector of the so-called control points. By employing such an approach, it is shown that various types of constraints are formulated as linear function of the control points, and the problems reduce to quadratic programming problems. We demonstrate the effectiveness and usefulness by numerical examples including approximation of probability density functions, approximation of discontinuous functions, and trajectory planning.
doi_str_mv 10.1016/j.amc.2011.06.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926290940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031100912X</els_id><sourcerecordid>926290940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-f517c530d1b988cb763660c1053a3b01edae67770acf0fbf7f0254ce54d3772b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG-9eWp9adpki15k8R8s7EXPIU1f3CxtU5Os4rc3Sz0LAwOP3zyYIeSaQkGB8tt9oQZdlEBpATxJnJAFXQmW17xqTskCoOE5A2Dn5CKEPQAITqsFud9O0Q6qz8LgXNzZ8SNTY5fZMaKfXK_i8RKm3o4Ysm8bd5l2Y4heJSJckjOj-oBXf74k70-Pb-uXfLN9fl0_bHLNyibmpqZC1ww62jarlW4FZ5yDplAzxVqg2CnkQghQ2oBpjTBQ1pXGuuqYEGXLluRm_jt593nAEOVgg8a-VyO6Q5BNycsGmgoSSWdSexeCRyMnn-r5H0lBHoeSe5mGksehJPAkkTJ3cwZThS-LXgZtcdTYWY86ys7Zf9K_oOtxCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926290940</pqid></control><display><type>article</type><title>Optimal smoothing and interpolating splines with constraints</title><source>Elsevier ScienceDirect Journals</source><creator>Kano, Hiroyuki ; Fujioka, Hiroyuki ; Martin, Clyde F.</creator><creatorcontrib>Kano, Hiroyuki ; Fujioka, Hiroyuki ; Martin, Clyde F.</creatorcontrib><description>This paper considers the problem for designing optimal smoothing and interpolating splines with equality and/or inequality constraints. The splines are constituted by employing normalized uniform B-splines as the basis functions, namely as weighted sum of shifted B-splines of degree k. Then a central issue is to determine an optimal vector of the so-called control points. By employing such an approach, it is shown that various types of constraints are formulated as linear function of the control points, and the problems reduce to quadratic programming problems. We demonstrate the effectiveness and usefulness by numerical examples including approximation of probability density functions, approximation of discontinuous functions, and trajectory planning.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.06.067</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; B-splines ; Equality/inequality constraint ; Inequalities ; Mathematical analysis ; Mathematical models ; Optimal interpolating splines ; Optimal smoothing splines ; Optimization ; Quadratic programming ; Smoothing ; Splines</subject><ispartof>Applied mathematics and computation, 2011-11, Vol.218 (5), p.1831-1844</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-f517c530d1b988cb763660c1053a3b01edae67770acf0fbf7f0254ce54d3772b3</citedby><cites>FETCH-LOGICAL-c329t-f517c530d1b988cb763660c1053a3b01edae67770acf0fbf7f0254ce54d3772b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630031100912X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kano, Hiroyuki</creatorcontrib><creatorcontrib>Fujioka, Hiroyuki</creatorcontrib><creatorcontrib>Martin, Clyde F.</creatorcontrib><title>Optimal smoothing and interpolating splines with constraints</title><title>Applied mathematics and computation</title><description>This paper considers the problem for designing optimal smoothing and interpolating splines with equality and/or inequality constraints. The splines are constituted by employing normalized uniform B-splines as the basis functions, namely as weighted sum of shifted B-splines of degree k. Then a central issue is to determine an optimal vector of the so-called control points. By employing such an approach, it is shown that various types of constraints are formulated as linear function of the control points, and the problems reduce to quadratic programming problems. We demonstrate the effectiveness and usefulness by numerical examples including approximation of probability density functions, approximation of discontinuous functions, and trajectory planning.</description><subject>Approximation</subject><subject>B-splines</subject><subject>Equality/inequality constraint</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal interpolating splines</subject><subject>Optimal smoothing splines</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Smoothing</subject><subject>Splines</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG-9eWp9adpki15k8R8s7EXPIU1f3CxtU5Os4rc3Sz0LAwOP3zyYIeSaQkGB8tt9oQZdlEBpATxJnJAFXQmW17xqTskCoOE5A2Dn5CKEPQAITqsFud9O0Q6qz8LgXNzZ8SNTY5fZMaKfXK_i8RKm3o4Ysm8bd5l2Y4heJSJckjOj-oBXf74k70-Pb-uXfLN9fl0_bHLNyibmpqZC1ww62jarlW4FZ5yDplAzxVqg2CnkQghQ2oBpjTBQ1pXGuuqYEGXLluRm_jt593nAEOVgg8a-VyO6Q5BNycsGmgoSSWdSexeCRyMnn-r5H0lBHoeSe5mGksehJPAkkTJ3cwZThS-LXgZtcdTYWY86ys7Zf9K_oOtxCw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Kano, Hiroyuki</creator><creator>Fujioka, Hiroyuki</creator><creator>Martin, Clyde F.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Optimal smoothing and interpolating splines with constraints</title><author>Kano, Hiroyuki ; Fujioka, Hiroyuki ; Martin, Clyde F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-f517c530d1b988cb763660c1053a3b01edae67770acf0fbf7f0254ce54d3772b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>B-splines</topic><topic>Equality/inequality constraint</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal interpolating splines</topic><topic>Optimal smoothing splines</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Smoothing</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kano, Hiroyuki</creatorcontrib><creatorcontrib>Fujioka, Hiroyuki</creatorcontrib><creatorcontrib>Martin, Clyde F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kano, Hiroyuki</au><au>Fujioka, Hiroyuki</au><au>Martin, Clyde F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal smoothing and interpolating splines with constraints</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>218</volume><issue>5</issue><spage>1831</spage><epage>1844</epage><pages>1831-1844</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper considers the problem for designing optimal smoothing and interpolating splines with equality and/or inequality constraints. The splines are constituted by employing normalized uniform B-splines as the basis functions, namely as weighted sum of shifted B-splines of degree k. Then a central issue is to determine an optimal vector of the so-called control points. By employing such an approach, it is shown that various types of constraints are formulated as linear function of the control points, and the problems reduce to quadratic programming problems. We demonstrate the effectiveness and usefulness by numerical examples including approximation of probability density functions, approximation of discontinuous functions, and trajectory planning.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.06.067</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-11, Vol.218 (5), p.1831-1844
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_926290940
source Elsevier ScienceDirect Journals
subjects Approximation
B-splines
Equality/inequality constraint
Inequalities
Mathematical analysis
Mathematical models
Optimal interpolating splines
Optimal smoothing splines
Optimization
Quadratic programming
Smoothing
Splines
title Optimal smoothing and interpolating splines with constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20smoothing%20and%20interpolating%20splines%20with%20constraints&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Kano,%20Hiroyuki&rft.date=2011-11-01&rft.volume=218&rft.issue=5&rft.spage=1831&rft.epage=1844&rft.pages=1831-1844&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2011.06.067&rft_dat=%3Cproquest_cross%3E926290940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926290940&rft_id=info:pmid/&rft_els_id=S009630031100912X&rfr_iscdi=true