Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid

In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2011-11, Vol.66 (21), p.5055-5063
Hauptverfasser: Chen, R.H., Tian, W.X., Su, G.H., Qiu, S.Z., Ishiwatari, Yuki, Oka, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5063
container_issue 21
container_start_page 5055
container_title Chemical engineering science
container_volume 66
creator Chen, R.H.
Tian, W.X.
Su, G.H.
Qiu, S.Z.
Ishiwatari, Yuki
Oka, Yoshiaki
description In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble. ► Coalescence of bubble pairs was numerically investigated using the MPS method.► The bubble–liquid interface was captured by the motion of interfacial particles.► The leading bubble could influence the motion of the trailing bubble greatly.► Bubble deformation characteristics were obtained under various parametric ranges.► MPS method is competent in evaluating the complicated bubble dynamics.
doi_str_mv 10.1016/j.ces.2011.06.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926288639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911004441</els_id><sourcerecordid>1709769451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-2f7f0717b34675e697404a26e7d8cbdbffb8af01f595738742deed072391bb653</originalsourceid><addsrcrecordid>eNp9kc1q3DAYRUVpoNOkD9BVtSnpxu4nWT8WWYXQPwgNpM1aSPKnQYPHnkh2oG9fDROyDAiE4NzL5YiQjwxaBkx93bUBS8uBsRZUC7J_Qzas110jBMi3ZAMApuESzDvyvpRdfWrNYEPuf697zCm4kabpCcuStm5J80TrCbMbsQScAtI5Ur96PyI9uJQLzamkaVsz1NGyuO3kpoWO6XFNwwU5i24s-OH5PicP37_9vfnZ3N79-HVzfdsEwdTS8KgjaKZ9J5SWqIwWIBxXqIc--MHH6HsXgUVppO56LfiAOIDmnWHeK9mdk8tT7yHPj2udbveprh1HN-G8Fmu44n2vOlPJL6-STIPRygjJKspOaMhzKRmjPeS0d_mfZWCPpu3OVtP2aNqCstV0zXx-rneliozZTSGVlyAXUkLPeOU-nbjoZuu2VaF9-FOLZP2NulQfiasTgdXbU8JsS0hH_0PKGBY7zOmVHf8Btk6b_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709769451</pqid></control><display><type>article</type><title>Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, R.H. ; Tian, W.X. ; Su, G.H. ; Qiu, S.Z. ; Ishiwatari, Yuki ; Oka, Yoshiaki</creator><creatorcontrib>Chen, R.H. ; Tian, W.X. ; Su, G.H. ; Qiu, S.Z. ; Ishiwatari, Yuki ; Oka, Yoshiaki</creatorcontrib><description>In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble. ► Coalescence of bubble pairs was numerically investigated using the MPS method.► The bubble–liquid interface was captured by the motion of interfacial particles.► The leading bubble could influence the motion of the trailing bubble greatly.► Bubble deformation characteristics were obtained under various parametric ranges.► MPS method is competent in evaluating the complicated bubble dynamics.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.06.058</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bubble pair ; Bubble velocity ; Bubbles ; Chemical engineering ; Coalescence ; Coalescing ; Computational fluid dynamics ; equations ; Exact sciences and technology ; Hydrodynamics of contact apparatus ; Liquids ; Mathematical analysis ; Mathematical models ; Moving particle semi-implicit method ; Numerical simulation ; Oscillations ; Two-phase flow ; vapors</subject><ispartof>Chemical engineering science, 2011-11, Vol.66 (21), p.5055-5063</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-2f7f0717b34675e697404a26e7d8cbdbffb8af01f595738742deed072391bb653</citedby><cites>FETCH-LOGICAL-c416t-2f7f0717b34675e697404a26e7d8cbdbffb8af01f595738742deed072391bb653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250911004441$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24550812$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, R.H.</creatorcontrib><creatorcontrib>Tian, W.X.</creatorcontrib><creatorcontrib>Su, G.H.</creatorcontrib><creatorcontrib>Qiu, S.Z.</creatorcontrib><creatorcontrib>Ishiwatari, Yuki</creatorcontrib><creatorcontrib>Oka, Yoshiaki</creatorcontrib><title>Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid</title><title>Chemical engineering science</title><description>In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble. ► Coalescence of bubble pairs was numerically investigated using the MPS method.► The bubble–liquid interface was captured by the motion of interfacial particles.► The leading bubble could influence the motion of the trailing bubble greatly.► Bubble deformation characteristics were obtained under various parametric ranges.► MPS method is competent in evaluating the complicated bubble dynamics.</description><subject>Applied sciences</subject><subject>Bubble pair</subject><subject>Bubble velocity</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Moving particle semi-implicit method</subject><subject>Numerical simulation</subject><subject>Oscillations</subject><subject>Two-phase flow</subject><subject>vapors</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAYRUVpoNOkD9BVtSnpxu4nWT8WWYXQPwgNpM1aSPKnQYPHnkh2oG9fDROyDAiE4NzL5YiQjwxaBkx93bUBS8uBsRZUC7J_Qzas110jBMi3ZAMApuESzDvyvpRdfWrNYEPuf697zCm4kabpCcuStm5J80TrCbMbsQScAtI5Ur96PyI9uJQLzamkaVsz1NGyuO3kpoWO6XFNwwU5i24s-OH5PicP37_9vfnZ3N79-HVzfdsEwdTS8KgjaKZ9J5SWqIwWIBxXqIc--MHH6HsXgUVppO56LfiAOIDmnWHeK9mdk8tT7yHPj2udbveprh1HN-G8Fmu44n2vOlPJL6-STIPRygjJKspOaMhzKRmjPeS0d_mfZWCPpu3OVtP2aNqCstV0zXx-rneliozZTSGVlyAXUkLPeOU-nbjoZuu2VaF9-FOLZP2NulQfiasTgdXbU8JsS0hH_0PKGBY7zOmVHf8Btk6b_w</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Chen, R.H.</creator><creator>Tian, W.X.</creator><creator>Su, G.H.</creator><creator>Qiu, S.Z.</creator><creator>Ishiwatari, Yuki</creator><creator>Oka, Yoshiaki</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid</title><author>Chen, R.H. ; Tian, W.X. ; Su, G.H. ; Qiu, S.Z. ; Ishiwatari, Yuki ; Oka, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-2f7f0717b34675e697404a26e7d8cbdbffb8af01f595738742deed072391bb653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Bubble pair</topic><topic>Bubble velocity</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Moving particle semi-implicit method</topic><topic>Numerical simulation</topic><topic>Oscillations</topic><topic>Two-phase flow</topic><topic>vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, R.H.</creatorcontrib><creatorcontrib>Tian, W.X.</creatorcontrib><creatorcontrib>Su, G.H.</creatorcontrib><creatorcontrib>Qiu, S.Z.</creatorcontrib><creatorcontrib>Ishiwatari, Yuki</creatorcontrib><creatorcontrib>Oka, Yoshiaki</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, R.H.</au><au>Tian, W.X.</au><au>Su, G.H.</au><au>Qiu, S.Z.</au><au>Ishiwatari, Yuki</au><au>Oka, Yoshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid</atitle><jtitle>Chemical engineering science</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>66</volume><issue>21</issue><spage>5055</spage><epage>5063</epage><pages>5055-5063</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble. ► Coalescence of bubble pairs was numerically investigated using the MPS method.► The bubble–liquid interface was captured by the motion of interfacial particles.► The leading bubble could influence the motion of the trailing bubble greatly.► Bubble deformation characteristics were obtained under various parametric ranges.► MPS method is competent in evaluating the complicated bubble dynamics.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.06.058</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2011-11, Vol.66 (21), p.5055-5063
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_926288639
source Elsevier ScienceDirect Journals
subjects Applied sciences
Bubble pair
Bubble velocity
Bubbles
Chemical engineering
Coalescence
Coalescing
Computational fluid dynamics
equations
Exact sciences and technology
Hydrodynamics of contact apparatus
Liquids
Mathematical analysis
Mathematical models
Moving particle semi-implicit method
Numerical simulation
Oscillations
Two-phase flow
vapors
title Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20coalescence%20of%20bubble%20pairs%20rising%20in%20a%20stagnant%20liquid&rft.jtitle=Chemical%20engineering%20science&rft.au=Chen,%20R.H.&rft.date=2011-11-01&rft.volume=66&rft.issue=21&rft.spage=5055&rft.epage=5063&rft.pages=5055-5063&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.06.058&rft_dat=%3Cproquest_cross%3E1709769451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709769451&rft_id=info:pmid/&rft_els_id=S0009250911004441&rfr_iscdi=true