The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations

We present a new finite volume scheme for the advection-diffusion-reaction equation. The scheme is second order accurate in the grid size, both for dominant diffusion and dominant advection, and has only a three-point coupling in each spatial direction. Our scheme is based on a new integral represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2011, Vol.46 (1), p.47-70
Hauptverfasser: ten Thije Boonkkamp, J. H. M., Anthonissen, M. J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new finite volume scheme for the advection-diffusion-reaction equation. The scheme is second order accurate in the grid size, both for dominant diffusion and dominant advection, and has only a three-point coupling in each spatial direction. Our scheme is based on a new integral representation for the flux of the one-dimensional advection-diffusion-reaction equation, which is derived from the solution of a local boundary value problem for the entire equation, including the source term. The flux therefore consists of two parts, corresponding to the homogeneous and particular solution of the boundary value problem. Applying suitable quadrature rules to the integral representation gives the complete flux scheme. Extensions of the complete flux scheme to two-dimensional and time-dependent problems are derived, containing the cross flux term or the time derivative in the inhomogeneous flux, respectively. The resulting finite volume-complete flux scheme is validated for several test problems.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-010-9388-8