Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution

The leaching kinetics of willemite in ammonia-ammonium chloride solution was investigated. The effects of the ammonia-ammonium ratio, particle size, temperature, and total ammonia concentration on the leaching rate of willemite were determined. The results show that the optimum ammonia-ammonium rati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.633-641
Hauptverfasser: Ding, Zhiying, Yin, Zhoulan, Wu, Xifei, Hu, Huiping, Chen, Qiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 633
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 42
creator Ding, Zhiying
Yin, Zhoulan
Wu, Xifei
Hu, Huiping
Chen, Qiyuan
description The leaching kinetics of willemite in ammonia-ammonium chloride solution was investigated. The effects of the ammonia-ammonium ratio, particle size, temperature, and total ammonia concentration on the leaching rate of willemite were determined. The results show that the optimum ammonia-ammonium ratio is 1:2 over the studied range. The zinc extraction increases with the reduction of particle size and with the increase of temperature and the total ammonia concentration. Leaching kinetics indicate that the grain pore model could be adopted to describe the leaching process, and diffusion is the main rate-controlling step. The apparent activation energy was determined to be 54.47 ± 6.39 kJ/mol and a reaction order with respect to NH 3 (aq) was 3.16 ± 0.40, both of which are likely a result of the parallel nature of the chemical reaction and diffusion in porous solids, even if the chemical reaction is not the rate-controlling step.
doi_str_mv 10.1007/s11663-010-9472-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926278125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926278125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-53a952f4f2ac229bab3ba4cf5354a86bc8d51513062efc152a92f134c4cd67593</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosoqKs_wFtBxFM0k682x2X9xAUPKh5Dmk000iZr0h7893bpIiJ4moF55uXlKYoTwBeAcXWZAYSgCANGklUE0Z3iADijCCSI3XHHFUVcAN8vDnP-wBgLKelBcbW02rz78FY--GB7b3IZXfnq29Z2vrelD-W862LwGk1z6MrFexuTX9nyKbZD72M4KvacbrM93s5Z8XJz_by4Q8vH2_vFfIkMreoecaolJ445og0hstENbTQzjlPOdC0aU684cKBYEOsMcKIlcUCZYWYlKi7prDifctcpfg4296rz2di21cHGIStJBKlqIHwkT_-QH3FIYSynQNDREKeARwomyqSYc7JOrZPvdPpSgNVGq5q0qlGr2mhVdPw52ybrbHTrkg7G559HwhjBdb1pQCYuj6fwZtOvBv-GfwPUkIXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639475310</pqid></control><display><type>article</type><title>Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ding, Zhiying ; Yin, Zhoulan ; Wu, Xifei ; Hu, Huiping ; Chen, Qiyuan</creator><creatorcontrib>Ding, Zhiying ; Yin, Zhoulan ; Wu, Xifei ; Hu, Huiping ; Chen, Qiyuan</creatorcontrib><description>The leaching kinetics of willemite in ammonia-ammonium chloride solution was investigated. The effects of the ammonia-ammonium ratio, particle size, temperature, and total ammonia concentration on the leaching rate of willemite were determined. The results show that the optimum ammonia-ammonium ratio is 1:2 over the studied range. The zinc extraction increases with the reduction of particle size and with the increase of temperature and the total ammonia concentration. Leaching kinetics indicate that the grain pore model could be adopted to describe the leaching process, and diffusion is the main rate-controlling step. The apparent activation energy was determined to be 54.47 ± 6.39 kJ/mol and a reaction order with respect to NH 3 (aq) was 3.16 ± 0.40, both of which are likely a result of the parallel nature of the chemical reaction and diffusion in porous solids, even if the chemical reaction is not the rate-controlling step.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-010-9472-3</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ammonia ; Applied sciences ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Chlorides ; Diffusion ; Diffusion rate ; Exact sciences and technology ; Leaching ; Materials Science ; Mathematical models ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Particle size ; Production of metals ; Reaction kinetics ; Solvent extraction processes ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Zinc</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.633-641</ispartof><rights>THE MINERALS, METALS &amp; MATERIALS SOCIETY and ASM INTERNATIONAL 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-53a952f4f2ac229bab3ba4cf5354a86bc8d51513062efc152a92f134c4cd67593</citedby><cites>FETCH-LOGICAL-c378t-53a952f4f2ac229bab3ba4cf5354a86bc8d51513062efc152a92f134c4cd67593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-010-9472-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-010-9472-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24420885$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhiying</creatorcontrib><creatorcontrib>Yin, Zhoulan</creatorcontrib><creatorcontrib>Wu, Xifei</creatorcontrib><creatorcontrib>Hu, Huiping</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><title>Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The leaching kinetics of willemite in ammonia-ammonium chloride solution was investigated. The effects of the ammonia-ammonium ratio, particle size, temperature, and total ammonia concentration on the leaching rate of willemite were determined. The results show that the optimum ammonia-ammonium ratio is 1:2 over the studied range. The zinc extraction increases with the reduction of particle size and with the increase of temperature and the total ammonia concentration. Leaching kinetics indicate that the grain pore model could be adopted to describe the leaching process, and diffusion is the main rate-controlling step. The apparent activation energy was determined to be 54.47 ± 6.39 kJ/mol and a reaction order with respect to NH 3 (aq) was 3.16 ± 0.40, both of which are likely a result of the parallel nature of the chemical reaction and diffusion in porous solids, even if the chemical reaction is not the rate-controlling step.</description><subject>Ammonia</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Exact sciences and technology</subject><subject>Leaching</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Particle size</subject><subject>Production of metals</subject><subject>Reaction kinetics</subject><subject>Solvent extraction processes</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Zinc</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosoqKs_wFtBxFM0k682x2X9xAUPKh5Dmk000iZr0h7893bpIiJ4moF55uXlKYoTwBeAcXWZAYSgCANGklUE0Z3iADijCCSI3XHHFUVcAN8vDnP-wBgLKelBcbW02rz78FY--GB7b3IZXfnq29Z2vrelD-W862LwGk1z6MrFexuTX9nyKbZD72M4KvacbrM93s5Z8XJz_by4Q8vH2_vFfIkMreoecaolJ445og0hstENbTQzjlPOdC0aU684cKBYEOsMcKIlcUCZYWYlKi7prDifctcpfg4296rz2di21cHGIStJBKlqIHwkT_-QH3FIYSynQNDREKeARwomyqSYc7JOrZPvdPpSgNVGq5q0qlGr2mhVdPw52ybrbHTrkg7G559HwhjBdb1pQCYuj6fwZtOvBv-GfwPUkIXH</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Ding, Zhiying</creator><creator>Yin, Zhoulan</creator><creator>Wu, Xifei</creator><creator>Hu, Huiping</creator><creator>Chen, Qiyuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110801</creationdate><title>Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution</title><author>Ding, Zhiying ; Yin, Zhoulan ; Wu, Xifei ; Hu, Huiping ; Chen, Qiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-53a952f4f2ac229bab3ba4cf5354a86bc8d51513062efc152a92f134c4cd67593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ammonia</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Exact sciences and technology</topic><topic>Leaching</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Particle size</topic><topic>Production of metals</topic><topic>Reaction kinetics</topic><topic>Solvent extraction processes</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhiying</creatorcontrib><creatorcontrib>Yin, Zhoulan</creatorcontrib><creatorcontrib>Wu, Xifei</creatorcontrib><creatorcontrib>Hu, Huiping</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhiying</au><au>Yin, Zhoulan</au><au>Wu, Xifei</au><au>Hu, Huiping</au><au>Chen, Qiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>42</volume><issue>4</issue><spage>633</spage><epage>641</epage><pages>633-641</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The leaching kinetics of willemite in ammonia-ammonium chloride solution was investigated. The effects of the ammonia-ammonium ratio, particle size, temperature, and total ammonia concentration on the leaching rate of willemite were determined. The results show that the optimum ammonia-ammonium ratio is 1:2 over the studied range. The zinc extraction increases with the reduction of particle size and with the increase of temperature and the total ammonia concentration. Leaching kinetics indicate that the grain pore model could be adopted to describe the leaching process, and diffusion is the main rate-controlling step. The apparent activation energy was determined to be 54.47 ± 6.39 kJ/mol and a reaction order with respect to NH 3 (aq) was 3.16 ± 0.40, both of which are likely a result of the parallel nature of the chemical reaction and diffusion in porous solids, even if the chemical reaction is not the rate-controlling step.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-010-9472-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.633-641
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_miscellaneous_926278125
source SpringerLink Journals - AutoHoldings
subjects Ammonia
Applied sciences
Characterization and Evaluation of Materials
Chemical reactions
Chemistry and Materials Science
Chlorides
Diffusion
Diffusion rate
Exact sciences and technology
Leaching
Materials Science
Mathematical models
Metallic Materials
Metals. Metallurgy
Nanotechnology
Particle size
Production of metals
Reaction kinetics
Solvent extraction processes
Structural Materials
Surfaces and Interfaces
Thin Films
Zinc
title Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaching%20Kinetics%20of%20Willemite%20in%20Ammonia-Ammonium%20Chloride%20Solution&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Ding,%20Zhiying&rft.date=2011-08-01&rft.volume=42&rft.issue=4&rft.spage=633&rft.epage=641&rft.pages=633-641&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-010-9472-3&rft_dat=%3Cproquest_cross%3E926278125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639475310&rft_id=info:pmid/&rfr_iscdi=true