Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell

In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 degree C. The first step consists in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2011-08, Vol.519 (21), p.7221-7223
Hauptverfasser: PAINCHAUD, T, BARREAU, N, ARZEL, L, KESSLER, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7223
container_issue 21
container_start_page 7221
container_title Thin solid films
container_volume 519
creator PAINCHAUD, T
BARREAU, N
ARZEL, L
KESSLER, J
description In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 degree C. The first step consists in the growth of Cu-poor ([Cu]/[In+Ga]=0.9) precursor layers. This paper aims at investigating the impact of this layer deposition duration on the CIGSe and respective solar cell properties. It is observed that for the two substrate temperatures investigated, the morphological and structural properties of the CIGSe layers do not change with increasing precursor deposition speed, even when it is increased by ten. Furthermore, the respective device performance also appears not affected by this reduction of the precursor growth time; all cells demonstrate 15% efficiency. From this work, the duration of our standard deposition process could be decreased from 23 to 14min without performance loss independently of the substrate temperature.
doi_str_mv 10.1016/j.tsf.2011.01.098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926277728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926277728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-32aa80beb7815274df22c62cdb11c79cd79b4b9d3146d171f8c10c27f5ea085d3</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMouK5-AG-9iAq2vvf6J4k3WVxdWPCgnkOaJrpLt61Ji_jtbdlFGJjLzDD8GLtESBCwuN8mfXAJAWICo6Q4YjMUXMbEUzxmM4AM4gIknLKzELYAgETpjImlDn20GG5Wzd2zvn2zFHXemsGH1kefvv3pvx6i1a7Tpo_aJgptrX1kbF2fsxOn62AvDj5nH8un98VLvH59Xi0e17Ehoj5OSWsBpS25wJx4VjkiU5CpSkTDpam4LLNSVilmRYUcnTAIhrjLrQaRV-mcXe93O99-Dzb0arcJ0wHd2HYISlJBnHMSYxL3SePbELx1qvObnfa_CkFNkNRWjZDUBEnBKDl1rg7rOhhdO68bswn_RcrytMg5pH_MpmZC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926277728</pqid></control><display><type>article</type><title>Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell</title><source>Elsevier ScienceDirect Journals</source><creator>PAINCHAUD, T ; BARREAU, N ; ARZEL, L ; KESSLER, J</creator><creatorcontrib>PAINCHAUD, T ; BARREAU, N ; ARZEL, L ; KESSLER, J</creatorcontrib><description>In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 degree C. The first step consists in the growth of Cu-poor ([Cu]/[In+Ga]=0.9) precursor layers. This paper aims at investigating the impact of this layer deposition duration on the CIGSe and respective solar cell properties. It is observed that for the two substrate temperatures investigated, the morphological and structural properties of the CIGSe layers do not change with increasing precursor deposition speed, even when it is increased by ten. Furthermore, the respective device performance also appears not affected by this reduction of the precursor growth time; all cells demonstrate 15% efficiency. From this work, the duration of our standard deposition process could be decreased from 23 to 14min without performance loss independently of the substrate temperature.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.098</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Copper ; COPPER INDIUM SELENIDE ; COPPER SELENIDE ; Cross-disciplinary physics: materials science; rheology ; DEPOSITION ; Devices ; ELECTRONIC PRODUCTS ; Energy ; Exact sciences and technology ; IMPACT PROPERTIES ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Physics ; Precursors ; SOLAR CELLS ; Solar cells. Photoelectrochemical cells ; Solar energy ; Theory and models of film growth ; THIN FILMS</subject><ispartof>Thin solid films, 2011-08, Vol.519 (21), p.7221-7223</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-32aa80beb7815274df22c62cdb11c79cd79b4b9d3146d171f8c10c27f5ea085d3</citedby><cites>FETCH-LOGICAL-c222t-32aa80beb7815274df22c62cdb11c79cd79b4b9d3146d171f8c10c27f5ea085d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24536570$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PAINCHAUD, T</creatorcontrib><creatorcontrib>BARREAU, N</creatorcontrib><creatorcontrib>ARZEL, L</creatorcontrib><creatorcontrib>KESSLER, J</creatorcontrib><title>Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell</title><title>Thin solid films</title><description>In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 degree C. The first step consists in the growth of Cu-poor ([Cu]/[In+Ga]=0.9) precursor layers. This paper aims at investigating the impact of this layer deposition duration on the CIGSe and respective solar cell properties. It is observed that for the two substrate temperatures investigated, the morphological and structural properties of the CIGSe layers do not change with increasing precursor deposition speed, even when it is increased by ten. Furthermore, the respective device performance also appears not affected by this reduction of the precursor growth time; all cells demonstrate 15% efficiency. From this work, the duration of our standard deposition process could be decreased from 23 to 14min without performance loss independently of the substrate temperature.</description><subject>Applied sciences</subject><subject>Copper</subject><subject>COPPER INDIUM SELENIDE</subject><subject>COPPER SELENIDE</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEPOSITION</subject><subject>Devices</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>IMPACT PROPERTIES</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Precursors</subject><subject>SOLAR CELLS</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Theory and models of film growth</subject><subject>THIN FILMS</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMouK5-AG-9iAq2vvf6J4k3WVxdWPCgnkOaJrpLt61Ji_jtbdlFGJjLzDD8GLtESBCwuN8mfXAJAWICo6Q4YjMUXMbEUzxmM4AM4gIknLKzELYAgETpjImlDn20GG5Wzd2zvn2zFHXemsGH1kefvv3pvx6i1a7Tpo_aJgptrX1kbF2fsxOn62AvDj5nH8un98VLvH59Xi0e17Ehoj5OSWsBpS25wJx4VjkiU5CpSkTDpam4LLNSVilmRYUcnTAIhrjLrQaRV-mcXe93O99-Dzb0arcJ0wHd2HYISlJBnHMSYxL3SePbELx1qvObnfa_CkFNkNRWjZDUBEnBKDl1rg7rOhhdO68bswn_RcrytMg5pH_MpmZC</recordid><startdate>20110831</startdate><enddate>20110831</enddate><creator>PAINCHAUD, T</creator><creator>BARREAU, N</creator><creator>ARZEL, L</creator><creator>KESSLER, J</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110831</creationdate><title>Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell</title><author>PAINCHAUD, T ; BARREAU, N ; ARZEL, L ; KESSLER, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-32aa80beb7815274df22c62cdb11c79cd79b4b9d3146d171f8c10c27f5ea085d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Copper</topic><topic>COPPER INDIUM SELENIDE</topic><topic>COPPER SELENIDE</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEPOSITION</topic><topic>Devices</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>IMPACT PROPERTIES</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Precursors</topic><topic>SOLAR CELLS</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Theory and models of film growth</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAINCHAUD, T</creatorcontrib><creatorcontrib>BARREAU, N</creatorcontrib><creatorcontrib>ARZEL, L</creatorcontrib><creatorcontrib>KESSLER, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAINCHAUD, T</au><au>BARREAU, N</au><au>ARZEL, L</au><au>KESSLER, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell</atitle><jtitle>Thin solid films</jtitle><date>2011-08-31</date><risdate>2011</risdate><volume>519</volume><issue>21</issue><spage>7221</spage><epage>7223</epage><pages>7221-7223</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>In order to reduce the co-evaporation time of Cu(In,Ga)Se2 (CIGSe) thin film absorber, a sequential approach has been investigated. CIGSe layers have been grown using the three-step based CUPRO (Cu-Poor/Rich/Off) process at substrate temperature of 600 and 500 degree C. The first step consists in the growth of Cu-poor ([Cu]/[In+Ga]=0.9) precursor layers. This paper aims at investigating the impact of this layer deposition duration on the CIGSe and respective solar cell properties. It is observed that for the two substrate temperatures investigated, the morphological and structural properties of the CIGSe layers do not change with increasing precursor deposition speed, even when it is increased by ten. Furthermore, the respective device performance also appears not affected by this reduction of the precursor growth time; all cells demonstrate 15% efficiency. From this work, the duration of our standard deposition process could be decreased from 23 to 14min without performance loss independently of the substrate temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.tsf.2011.01.098</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2011-08, Vol.519 (21), p.7221-7223
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_926277728
source Elsevier ScienceDirect Journals
subjects Applied sciences
Copper
COPPER INDIUM SELENIDE
COPPER SELENIDE
Cross-disciplinary physics: materials science
rheology
DEPOSITION
Devices
ELECTRONIC PRODUCTS
Energy
Exact sciences and technology
IMPACT PROPERTIES
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Natural energy
Photovoltaic cells
Photovoltaic conversion
Physics
Precursors
SOLAR CELLS
Solar cells. Photoelectrochemical cells
Solar energy
Theory and models of film growth
THIN FILMS
title Fast Cu(In,Ga)Se2 precursor growth: Impact on solar cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Cu(In,Ga)Se2%20precursor%20growth:%20Impact%20on%20solar%20cell&rft.jtitle=Thin%20solid%20films&rft.au=PAINCHAUD,%20T&rft.date=2011-08-31&rft.volume=519&rft.issue=21&rft.spage=7221&rft.epage=7223&rft.pages=7221-7223&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.098&rft_dat=%3Cproquest_cross%3E926277728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926277728&rft_id=info:pmid/&rfr_iscdi=true