Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems
Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approxima...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2010-10, Vol.45 (1-3), p.359-381 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 1-3 |
container_start_page | 359 |
container_title | Journal of scientific computing |
container_volume | 45 |
creator | Jung, Jae-Hun Gottlieb, Sigal Kim, Saeja Oh Bresten, Chris L. Higgs, Daniel |
description | Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are
Gibbs complementary
to the RBF multi-quadric basis. |
doi_str_mv | 10.1007/s10915-010-9360-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926277685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926277685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1b58fba7e8de73198bcc4d78d0c45c3c00a2fe7848c4b59a86dd91bd5a61fa183</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoOKc_wLuAF15V37RNk1zOjzlhMBl6HdIknR1dM5NW3L83pYIgeBVeeJ7DyUHoksANAWC3gYAgNAECicgKSNgRmhDKsoQVghyjCXBOE5az_BSdhbAFAMFFOkFqbbX7tP6AXYUX9eYdr7yxHs-07r3SB1y3eK1MrRp8p0Id8LxvdVe7Fs_2e---6p0arjDoD3XQru3qtnd9wC_elY3dhXN0Uqkm2Iufd4re5o-v94tkuXp6vp8tE53lvEtISXlVKma5sSwjgpda54ZxAzqnOtMAKq0s4znXeUmF4oUxgpSGqoJUivBsiq7H3Fjro7ehk7vYxzaNam3sI0VapIwVnEby6g-5db1vYzmZiphEoCAQKTJS2rsQvK3k3sff-oMkIIfN5bi5jJvLYXPJopOOTohsu7H-N_l_6RuwFYTq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918310610</pqid></control><display><type>article</type><title>Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Jung, Jae-Hun ; Gottlieb, Sigal ; Kim, Saeja Oh ; Bresten, Chris L. ; Higgs, Daniel</creator><creatorcontrib>Jung, Jae-Hun ; Gottlieb, Sigal ; Kim, Saeja Oh ; Bresten, Chris L. ; Higgs, Daniel</creatorcontrib><description>Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are
Gibbs complementary
to the RBF multi-quadric basis.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-010-9360-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Convergence ; Gibbs phenomenon ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Orthogonality ; Partial differential equations ; Polynomials ; Radial basis function ; Theoretical</subject><ispartof>Journal of scientific computing, 2010-10, Vol.45 (1-3), p.359-381</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1b58fba7e8de73198bcc4d78d0c45c3c00a2fe7848c4b59a86dd91bd5a61fa183</citedby><cites>FETCH-LOGICAL-c348t-1b58fba7e8de73198bcc4d78d0c45c3c00a2fe7848c4b59a86dd91bd5a61fa183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-010-9360-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918310610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,33724,41467,42536,43784,51298,64362,64364,64366,72216</link.rule.ids></links><search><creatorcontrib>Jung, Jae-Hun</creatorcontrib><creatorcontrib>Gottlieb, Sigal</creatorcontrib><creatorcontrib>Kim, Saeja Oh</creatorcontrib><creatorcontrib>Bresten, Chris L.</creatorcontrib><creatorcontrib>Higgs, Daniel</creatorcontrib><title>Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are
Gibbs complementary
to the RBF multi-quadric basis.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Gibbs phenomenon</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orthogonality</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Radial basis function</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAYhYMoOKc_wLuAF15V37RNk1zOjzlhMBl6HdIknR1dM5NW3L83pYIgeBVeeJ7DyUHoksANAWC3gYAgNAECicgKSNgRmhDKsoQVghyjCXBOE5az_BSdhbAFAMFFOkFqbbX7tP6AXYUX9eYdr7yxHs-07r3SB1y3eK1MrRp8p0Id8LxvdVe7Fs_2e---6p0arjDoD3XQru3qtnd9wC_elY3dhXN0Uqkm2Iufd4re5o-v94tkuXp6vp8tE53lvEtISXlVKma5sSwjgpda54ZxAzqnOtMAKq0s4znXeUmF4oUxgpSGqoJUivBsiq7H3Fjro7ehk7vYxzaNam3sI0VapIwVnEby6g-5db1vYzmZiphEoCAQKTJS2rsQvK3k3sff-oMkIIfN5bi5jJvLYXPJopOOTohsu7H-N_l_6RuwFYTq</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Jung, Jae-Hun</creator><creator>Gottlieb, Sigal</creator><creator>Kim, Saeja Oh</creator><creator>Bresten, Chris L.</creator><creator>Higgs, Daniel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems</title><author>Jung, Jae-Hun ; Gottlieb, Sigal ; Kim, Saeja Oh ; Bresten, Chris L. ; Higgs, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1b58fba7e8de73198bcc4d78d0c45c3c00a2fe7848c4b59a86dd91bd5a61fa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Gibbs phenomenon</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orthogonality</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Radial basis function</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jae-Hun</creatorcontrib><creatorcontrib>Gottlieb, Sigal</creatorcontrib><creatorcontrib>Kim, Saeja Oh</creatorcontrib><creatorcontrib>Bresten, Chris L.</creatorcontrib><creatorcontrib>Higgs, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jae-Hun</au><au>Gottlieb, Sigal</au><au>Kim, Saeja Oh</au><au>Bresten, Chris L.</au><au>Higgs, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>45</volume><issue>1-3</issue><spage>359</spage><epage>381</epage><pages>359-381</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are
Gibbs complementary
to the RBF multi-quadric basis.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-010-9360-7</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2010-10, Vol.45 (1-3), p.359-381 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_926277685 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Approximation Computational Mathematics and Numerical Analysis Convergence Gibbs phenomenon Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Orthogonality Partial differential equations Polynomials Radial basis function Theoretical |
title | Recovery of High Order Accuracy in Radial Basis Function Approximations of Discontinuous Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20High%20Order%20Accuracy%20in%20Radial%20Basis%20Function%20Approximations%20of%20Discontinuous%20Problems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Jung,%20Jae-Hun&rft.date=2010-10-01&rft.volume=45&rft.issue=1-3&rft.spage=359&rft.epage=381&rft.pages=359-381&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-010-9360-7&rft_dat=%3Cproquest_cross%3E926277685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918310610&rft_id=info:pmid/&rfr_iscdi=true |