Construction of an ab initio kinetic model for industrial ethane pyrolysis

The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with availabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2011-09, Vol.57 (9), p.2458-2471
Hauptverfasser: Sun, Wenjie, Saeys, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2471
container_issue 9
container_start_page 2458
container_title AIChE journal
container_volume 57
creator Sun, Wenjie
Saeys, Mark
description The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011
doi_str_mv 10.1002/aic.12446
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926277478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926277478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_0EQRFxMzTvpUoq2PlAUpcuQZjIYnU5qMoP235va6kJwdbn3fudwOAAcYjTACJEz4-0AE8bEFuhhzmTBh4hvgx5CCBf5gHfBXkqveSNSkR64HoUmtbGzrQ8NDBU0DTQz6BufD_DNN671Fs5D6WpYhZgfZZd5b2ro2hfTOLhYxlAvk0_7YKcydXIHm9kHz5cXT6NJcXs_vhqd3xaWUSoKLqmhM0yQsiVWVrhZyQwhCDtES1mxsmKCIyMp4TOsJMalYq6yDnGiiLCO9sHJ2ncRw3vnUqvnPllX1zlN6JIeEkGkZFJl8ugP-Rq62ORwWimaiyFiBZ2uIRtDStFVehH93MSlxkivOtW5U_3daWaPN4YmWVNX0TTWp19BZiQfYpa5szX34Wu3_N9Qn1-NfpyLtcKn1n3-Kkx800JSyfX0bqynD0Le3EweNaZf2dqTEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883905268</pqid></control><display><type>article</type><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Wenjie ; Saeys, Mark</creator><creatorcontrib>Sun, Wenjie ; Saeys, Mark</creatorcontrib><description>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12446</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ab initio calculations ; Accuracy ; Applied sciences ; Approximation ; Chemical engineering ; Computer simulation ; Deviation ; Ethane ; ethane steam cracking ; Exact sciences and technology ; Mathematical models ; modeling ; Networks ; Quantum chemistry ; Reaction kinetics ; Simulation ; Temperature ; Thermodynamics</subject><ispartof>AIChE journal, 2011-09, Vol.57 (9), p.2458-2471</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</citedby><cites>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.12446$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.12446$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24475914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</description><subject>ab initio calculations</subject><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Deviation</subject><subject>Ethane</subject><subject>ethane steam cracking</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Networks</subject><subject>Quantum chemistry</subject><subject>Reaction kinetics</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_0EQRFxMzTvpUoq2PlAUpcuQZjIYnU5qMoP235va6kJwdbn3fudwOAAcYjTACJEz4-0AE8bEFuhhzmTBh4hvgx5CCBf5gHfBXkqveSNSkR64HoUmtbGzrQ8NDBU0DTQz6BufD_DNN671Fs5D6WpYhZgfZZd5b2ro2hfTOLhYxlAvk0_7YKcydXIHm9kHz5cXT6NJcXs_vhqd3xaWUSoKLqmhM0yQsiVWVrhZyQwhCDtES1mxsmKCIyMp4TOsJMalYq6yDnGiiLCO9sHJ2ncRw3vnUqvnPllX1zlN6JIeEkGkZFJl8ugP-Rq62ORwWimaiyFiBZ2uIRtDStFVehH93MSlxkivOtW5U_3daWaPN4YmWVNX0TTWp19BZiQfYpa5szX34Wu3_N9Qn1-NfpyLtcKn1n3-Kkx800JSyfX0bqynD0Le3EweNaZf2dqTEQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Sun, Wenjie</creator><creator>Saeys, Mark</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201109</creationdate><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><author>Sun, Wenjie ; Saeys, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ab initio calculations</topic><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Deviation</topic><topic>Ethane</topic><topic>ethane steam cracking</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Networks</topic><topic>Quantum chemistry</topic><topic>Reaction kinetics</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wenjie</au><au>Saeys, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of an ab initio kinetic model for industrial ethane pyrolysis</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2011-09</date><risdate>2011</risdate><volume>57</volume><issue>9</issue><spage>2458</spage><epage>2471</epage><pages>2458-2471</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12446</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2011-09, Vol.57 (9), p.2458-2471
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_926277478
source Wiley Online Library Journals Frontfile Complete
subjects ab initio calculations
Accuracy
Applied sciences
Approximation
Chemical engineering
Computer simulation
Deviation
Ethane
ethane steam cracking
Exact sciences and technology
Mathematical models
modeling
Networks
Quantum chemistry
Reaction kinetics
Simulation
Temperature
Thermodynamics
title Construction of an ab initio kinetic model for industrial ethane pyrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20an%20ab%20initio%20kinetic%20model%20for%20industrial%20ethane%20pyrolysis&rft.jtitle=AIChE%20journal&rft.au=Sun,%20Wenjie&rft.date=2011-09&rft.volume=57&rft.issue=9&rft.spage=2458&rft.epage=2471&rft.pages=2458-2471&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12446&rft_dat=%3Cproquest_cross%3E926277478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883905268&rft_id=info:pmid/&rfr_iscdi=true