Construction of an ab initio kinetic model for industrial ethane pyrolysis
The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with availabl...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2011-09, Vol.57 (9), p.2458-2471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2471 |
---|---|
container_issue | 9 |
container_start_page | 2458 |
container_title | AIChE journal |
container_volume | 57 |
creator | Sun, Wenjie Saeys, Mark |
description | The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011 |
doi_str_mv | 10.1002/aic.12446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926277478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926277478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_0EQRFxMzTvpUoq2PlAUpcuQZjIYnU5qMoP235va6kJwdbn3fudwOAAcYjTACJEz4-0AE8bEFuhhzmTBh4hvgx5CCBf5gHfBXkqveSNSkR64HoUmtbGzrQ8NDBU0DTQz6BufD_DNN671Fs5D6WpYhZgfZZd5b2ro2hfTOLhYxlAvk0_7YKcydXIHm9kHz5cXT6NJcXs_vhqd3xaWUSoKLqmhM0yQsiVWVrhZyQwhCDtES1mxsmKCIyMp4TOsJMalYq6yDnGiiLCO9sHJ2ncRw3vnUqvnPllX1zlN6JIeEkGkZFJl8ugP-Rq62ORwWimaiyFiBZ2uIRtDStFVehH93MSlxkivOtW5U_3daWaPN4YmWVNX0TTWp19BZiQfYpa5szX34Wu3_N9Qn1-NfpyLtcKn1n3-Kkx800JSyfX0bqynD0Le3EweNaZf2dqTEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883905268</pqid></control><display><type>article</type><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Wenjie ; Saeys, Mark</creator><creatorcontrib>Sun, Wenjie ; Saeys, Mark</creatorcontrib><description>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12446</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ab initio calculations ; Accuracy ; Applied sciences ; Approximation ; Chemical engineering ; Computer simulation ; Deviation ; Ethane ; ethane steam cracking ; Exact sciences and technology ; Mathematical models ; modeling ; Networks ; Quantum chemistry ; Reaction kinetics ; Simulation ; Temperature ; Thermodynamics</subject><ispartof>AIChE journal, 2011-09, Vol.57 (9), p.2458-2471</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</citedby><cites>FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.12446$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.12446$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24475914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</description><subject>ab initio calculations</subject><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Deviation</subject><subject>Ethane</subject><subject>ethane steam cracking</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Networks</subject><subject>Quantum chemistry</subject><subject>Reaction kinetics</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_0EQRFxMzTvpUoq2PlAUpcuQZjIYnU5qMoP235va6kJwdbn3fudwOAAcYjTACJEz4-0AE8bEFuhhzmTBh4hvgx5CCBf5gHfBXkqveSNSkR64HoUmtbGzrQ8NDBU0DTQz6BufD_DNN671Fs5D6WpYhZgfZZd5b2ro2hfTOLhYxlAvk0_7YKcydXIHm9kHz5cXT6NJcXs_vhqd3xaWUSoKLqmhM0yQsiVWVrhZyQwhCDtES1mxsmKCIyMp4TOsJMalYq6yDnGiiLCO9sHJ2ncRw3vnUqvnPllX1zlN6JIeEkGkZFJl8ugP-Rq62ORwWimaiyFiBZ2uIRtDStFVehH93MSlxkivOtW5U_3daWaPN4YmWVNX0TTWp19BZiQfYpa5szX34Wu3_N9Qn1-NfpyLtcKn1n3-Kkx800JSyfX0bqynD0Le3EweNaZf2dqTEQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Sun, Wenjie</creator><creator>Saeys, Mark</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201109</creationdate><title>Construction of an ab initio kinetic model for industrial ethane pyrolysis</title><author>Sun, Wenjie ; Saeys, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4336-573a3b1208cd18c6ebd4a2201e03d7f4df4650a7325b18711d84efce052826ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ab initio calculations</topic><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Deviation</topic><topic>Ethane</topic><topic>ethane steam cracking</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Networks</topic><topic>Quantum chemistry</topic><topic>Reaction kinetics</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wenjie</au><au>Saeys, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of an ab initio kinetic model for industrial ethane pyrolysis</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2011-09</date><risdate>2011</risdate><volume>57</volume><issue>9</issue><spage>2458</spage><epage>2471</epage><pages>2458-2471</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The industrial steam cracking of ethane was simulated using an ab initio kinetic model. The reaction network consists of 20 species and 150 reversible elementary reactions. The thermodynamic and kinetic parameters were obtained from ab initio CBS‐QB3 and W1U calculations and agree well with available experimental data. Predicted C2H6, C2H4, and H2 yields are within 5% of experimental data for the three sets of conditions tested. Though CH4 yields and outlet temperatures are particularly sensitive to the accuracy of the kinetic parameters, they are simulated with an accuracy of better than 10%. Larger deviations for the C3H6 and C2H2 yields are attributed to the limited size of the reaction network. The effect of total pressure on the rate coefficients was evaluated using Quantum Rice‐Ramsberger‐Kassel theory with the Modified Strong‐Collision approximation, and was found to be relatively minor for the reaction conditions tested. This study hence demonstrates the feasibility of simulating complex radical reactions using a predictive kinetic model derived from state‐of‐the‐art quantum chemical calculations. © 2010 American Institute of Chemical Engineers AIChE J, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12446</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2011-09, Vol.57 (9), p.2458-2471 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_926277478 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ab initio calculations Accuracy Applied sciences Approximation Chemical engineering Computer simulation Deviation Ethane ethane steam cracking Exact sciences and technology Mathematical models modeling Networks Quantum chemistry Reaction kinetics Simulation Temperature Thermodynamics |
title | Construction of an ab initio kinetic model for industrial ethane pyrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20an%20ab%20initio%20kinetic%20model%20for%20industrial%20ethane%20pyrolysis&rft.jtitle=AIChE%20journal&rft.au=Sun,%20Wenjie&rft.date=2011-09&rft.volume=57&rft.issue=9&rft.spage=2458&rft.epage=2471&rft.pages=2458-2471&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12446&rft_dat=%3Cproquest_cross%3E926277478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883905268&rft_id=info:pmid/&rfr_iscdi=true |