Level Set Equations on Surfaces via the Closest Point Method
Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recen...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2008-06, Vol.35 (2-3), p.219-240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 2-3 |
container_start_page | 219 |
container_title | Journal of scientific computing |
container_volume | 35 |
creator | Macdonald, Colin B. Ruuth, Steven J. |
description | Level set methods have been used in a great number of applications in ℝ
2
and ℝ
3
and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ
3
or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [
2008
]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry. |
doi_str_mv | 10.1007/s10915-008-9196-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926276889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926276889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AhavR3HnkAW6k1AdUFKrrkCZ37JTppE1mCv57ZxhBENzcu_nO4fARcgnsBhgTtxGYgiJhTCYKFE_4EZlAIbJEcAXHZMKkLBKRi_yUnMW4YYwpqdIJuVvgAWu6xJbO951pK99E6hu67EJpLEZ6qAxt10hntY8YW_rmq6alL9iuvTsnJ6WpI178_Cn5eJi_z56Sxevj8-x-kdgsl21_C4Vp4UqLzghhs0yAy7iD0qxEya1EBlZCwREtMpaujHGGuQJdbrgUMpuS67F3F_y-61fobRUt1rVp0HdRq5SngkupevLqD7nxXWj6cTpVIDOAnA99MFI2-BgDlnoXqq0JXxqYHnTqUafudepBp-Z9Jh0zsWebTwy_zf-HvgEQb3dG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918311468</pqid></control><display><type>article</type><title>Level Set Equations on Surfaces via the Closest Point Method</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Macdonald, Colin B. ; Ruuth, Steven J.</creator><creatorcontrib>Macdonald, Colin B. ; Ruuth, Steven J.</creatorcontrib><description>Level set methods have been used in a great number of applications in ℝ
2
and ℝ
3
and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ
3
or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [
2008
]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-008-9196-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Embedding ; Flexibility ; Hamilton-Jacobi equation ; Interpolation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Robustness ; Theoretical ; Transport</subject><ispartof>Journal of scientific computing, 2008-06, Vol.35 (2-3), p.219-240</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</citedby><cites>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-008-9196-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918311468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Macdonald, Colin B.</creatorcontrib><creatorcontrib>Ruuth, Steven J.</creatorcontrib><title>Level Set Equations on Surfaces via the Closest Point Method</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Level set methods have been used in a great number of applications in ℝ
2
and ℝ
3
and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ
3
or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [
2008
]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Embedding</subject><subject>Flexibility</subject><subject>Hamilton-Jacobi equation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Robustness</subject><subject>Theoretical</subject><subject>Transport</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AhavR3HnkAW6k1AdUFKrrkCZ37JTppE1mCv57ZxhBENzcu_nO4fARcgnsBhgTtxGYgiJhTCYKFE_4EZlAIbJEcAXHZMKkLBKRi_yUnMW4YYwpqdIJuVvgAWu6xJbO951pK99E6hu67EJpLEZ6qAxt10hntY8YW_rmq6alL9iuvTsnJ6WpI178_Cn5eJi_z56Sxevj8-x-kdgsl21_C4Vp4UqLzghhs0yAy7iD0qxEya1EBlZCwREtMpaujHGGuQJdbrgUMpuS67F3F_y-61fobRUt1rVp0HdRq5SngkupevLqD7nxXWj6cTpVIDOAnA99MFI2-BgDlnoXqq0JXxqYHnTqUafudepBp-Z9Jh0zsWebTwy_zf-HvgEQb3dG</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Macdonald, Colin B.</creator><creator>Ruuth, Steven J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Level Set Equations on Surfaces via the Closest Point Method</title><author>Macdonald, Colin B. ; Ruuth, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Embedding</topic><topic>Flexibility</topic><topic>Hamilton-Jacobi equation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Robustness</topic><topic>Theoretical</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macdonald, Colin B.</creatorcontrib><creatorcontrib>Ruuth, Steven J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macdonald, Colin B.</au><au>Ruuth, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level Set Equations on Surfaces via the Closest Point Method</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>35</volume><issue>2-3</issue><spage>219</spage><epage>240</epage><pages>219-240</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Level set methods have been used in a great number of applications in ℝ
2
and ℝ
3
and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ
3
or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [
2008
]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-008-9196-6</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2008-06, Vol.35 (2-3), p.219-240 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_926276889 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Computational Mathematics and Numerical Analysis Embedding Flexibility Hamilton-Jacobi equation Interpolation Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Partial differential equations Robustness Theoretical Transport |
title | Level Set Equations on Surfaces via the Closest Point Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20Set%20Equations%20on%20Surfaces%20via%20the%20Closest%20Point%20Method&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Macdonald,%20Colin%20B.&rft.date=2008-06-01&rft.volume=35&rft.issue=2-3&rft.spage=219&rft.epage=240&rft.pages=219-240&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-008-9196-6&rft_dat=%3Cproquest_cross%3E926276889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918311468&rft_id=info:pmid/&rfr_iscdi=true |