Level Set Equations on Surfaces via the Closest Point Method

Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2008-06, Vol.35 (2-3), p.219-240
Hauptverfasser: Macdonald, Colin B., Ruuth, Steven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 2-3
container_start_page 219
container_title Journal of scientific computing
container_volume 35
creator Macdonald, Colin B.
Ruuth, Steven J.
description Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [ 2008 ]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.
doi_str_mv 10.1007/s10915-008-9196-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926276889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926276889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AhavR3HnkAW6k1AdUFKrrkCZ37JTppE1mCv57ZxhBENzcu_nO4fARcgnsBhgTtxGYgiJhTCYKFE_4EZlAIbJEcAXHZMKkLBKRi_yUnMW4YYwpqdIJuVvgAWu6xJbO951pK99E6hu67EJpLEZ6qAxt10hntY8YW_rmq6alL9iuvTsnJ6WpI178_Cn5eJi_z56Sxevj8-x-kdgsl21_C4Vp4UqLzghhs0yAy7iD0qxEya1EBlZCwREtMpaujHGGuQJdbrgUMpuS67F3F_y-61fobRUt1rVp0HdRq5SngkupevLqD7nxXWj6cTpVIDOAnA99MFI2-BgDlnoXqq0JXxqYHnTqUafudepBp-Z9Jh0zsWebTwy_zf-HvgEQb3dG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918311468</pqid></control><display><type>article</type><title>Level Set Equations on Surfaces via the Closest Point Method</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Macdonald, Colin B. ; Ruuth, Steven J.</creator><creatorcontrib>Macdonald, Colin B. ; Ruuth, Steven J.</creatorcontrib><description>Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [ 2008 ]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-008-9196-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Embedding ; Flexibility ; Hamilton-Jacobi equation ; Interpolation ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Robustness ; Theoretical ; Transport</subject><ispartof>Journal of scientific computing, 2008-06, Vol.35 (2-3), p.219-240</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</citedby><cites>FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-008-9196-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918311468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Macdonald, Colin B.</creatorcontrib><creatorcontrib>Ruuth, Steven J.</creatorcontrib><title>Level Set Equations on Surfaces via the Closest Point Method</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [ 2008 ]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Embedding</subject><subject>Flexibility</subject><subject>Hamilton-Jacobi equation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Robustness</subject><subject>Theoretical</subject><subject>Transport</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AhavR3HnkAW6k1AdUFKrrkCZ37JTppE1mCv57ZxhBENzcu_nO4fARcgnsBhgTtxGYgiJhTCYKFE_4EZlAIbJEcAXHZMKkLBKRi_yUnMW4YYwpqdIJuVvgAWu6xJbO951pK99E6hu67EJpLEZ6qAxt10hntY8YW_rmq6alL9iuvTsnJ6WpI178_Cn5eJi_z56Sxevj8-x-kdgsl21_C4Vp4UqLzghhs0yAy7iD0qxEya1EBlZCwREtMpaujHGGuQJdbrgUMpuS67F3F_y-61fobRUt1rVp0HdRq5SngkupevLqD7nxXWj6cTpVIDOAnA99MFI2-BgDlnoXqq0JXxqYHnTqUafudepBp-Z9Jh0zsWebTwy_zf-HvgEQb3dG</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Macdonald, Colin B.</creator><creator>Ruuth, Steven J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Level Set Equations on Surfaces via the Closest Point Method</title><author>Macdonald, Colin B. ; Ruuth, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c359e25dfceda77c3371d36d1fab7f6c8e01c8156eece002baada0d5ed4a68783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Embedding</topic><topic>Flexibility</topic><topic>Hamilton-Jacobi equation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Robustness</topic><topic>Theoretical</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macdonald, Colin B.</creatorcontrib><creatorcontrib>Ruuth, Steven J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macdonald, Colin B.</au><au>Ruuth, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level Set Equations on Surfaces via the Closest Point Method</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>35</volume><issue>2-3</issue><spage>219</spage><epage>240</epage><pages>219-240</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Level set methods have been used in a great number of applications in ℝ 2 and ℝ 3 and it is natural to consider extending some of these methods to problems defined on surfaces embedded in ℝ 3 or higher dimensions. In this paper we consider the treatment of level set equations on surfaces via a recent technique for solving partial differential equations (PDEs) on surfaces, the Closest Point Method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943–1961, [ 2008 ]). Our main modification is to introduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This, in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results (up to fifth-order) on a variety of smooth test problems including passive transport, normal flow and redistancing. The algorithms we propose are straightforward modifications of standard codes, are carried out in the embedding space in a well-defined band around the surface and retain the robustness of the level set method with respect to the self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility of the method with respect to geometry.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-008-9196-6</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2008-06, Vol.35 (2-3), p.219-240
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_926276889
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Computational Mathematics and Numerical Analysis
Embedding
Flexibility
Hamilton-Jacobi equation
Interpolation
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Partial differential equations
Robustness
Theoretical
Transport
title Level Set Equations on Surfaces via the Closest Point Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20Set%20Equations%20on%20Surfaces%20via%20the%20Closest%20Point%20Method&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Macdonald,%20Colin%20B.&rft.date=2008-06-01&rft.volume=35&rft.issue=2-3&rft.spage=219&rft.epage=240&rft.pages=219-240&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-008-9196-6&rft_dat=%3Cproquest_cross%3E926276889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918311468&rft_id=info:pmid/&rfr_iscdi=true