A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model

This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2011-07, Vol.48 (1-3), p.258-273
Hauptverfasser: Morales de Luna, T., Castro Díaz, M. J., Parés Madroñal, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 1-3
container_start_page 258
container_title Journal of scientific computing
container_volume 48
creator Morales de Luna, T.
Castro Díaz, M. J.
Parés Madroñal, C.
description This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid transport flux given by some empirical law. The solid transport discharge proposed by Meyer-Peter & Müller is one of the most popular but it has the inconvenient of not including pressure forces. Due to this, this formula produces numerical simulations that are not realistic in zones where gravity effects are relevant, e.g. advancing front of the sand layer. Moreover, the thickness of the sediment layer is not taken into account and, as a consequence, mass conservation of sediment may fail. Fowler et al. proposed a generalization that takes into account gravity effects as well as the thickness of the sediment layer which is in better agreement with the physics of the problem. We propose to solve this system by using a path-conservative scheme for the hydrodynamical part and a duality method based on Bermúdez-Moreno algorithm for the morphodynamical component.
doi_str_mv 10.1007/s10915-010-9447-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926276881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926276881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5154b42c0978d8de34cc5714d5188ff20692c902ff5f0820e16ee9633dcb390e3</originalsourceid><addsrcrecordid>eNp1kM1KxDAQx4MouH48gLeAoKfoTJo2ydFvBRcF9eAp1HailW6zJt3Dvo0P4klfzC4rCIKnmWF-_2H4MbaDcIAA-jAhWMwFIAirlBa4wkaY60zowuIqG4ExudBKq3W2kdIrAFhj5Yg9HvHTWdk2_ZyPqX8JNfch8juqmwl1Pb-PZZemIfb8uExU89B9vpef7-NQN74Z5jHNKYpb6inyPT7--mjboRvW1G6xNV-2ibZ_6iZ7OD-7P7kU1zcXVydH16LKlOlFjrl6UrICq01taspUVeUaVZ2jMd5LKKysLEjvcw9GAmFBZIssq6unzAJlm2x_eXcaw9uMUu8mTaqobcuOwiw5KwupC2NwIHf_kK9hFrvhOSctmgzR4oLCJVXFkFIk76axmZRx7hDcwrVbunaDa7dw7RYZucykge2eKf5e_j_0DchggXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918311911</pqid></control><display><type>article</type><title>A Duality Method for Sediment Transport Based on a Modified Meyer-Peter &amp; Müller Model</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Morales de Luna, T. ; Castro Díaz, M. J. ; Parés Madroñal, C.</creator><creatorcontrib>Morales de Luna, T. ; Castro Díaz, M. J. ; Parés Madroñal, C.</creatorcontrib><description>This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid transport flux given by some empirical law. The solid transport discharge proposed by Meyer-Peter &amp; Müller is one of the most popular but it has the inconvenient of not including pressure forces. Due to this, this formula produces numerical simulations that are not realistic in zones where gravity effects are relevant, e.g. advancing front of the sand layer. Moreover, the thickness of the sediment layer is not taken into account and, as a consequence, mass conservation of sediment may fail. Fowler et al. proposed a generalization that takes into account gravity effects as well as the thickness of the sediment layer which is in better agreement with the physics of the problem. We propose to solve this system by using a path-conservative scheme for the hydrodynamical part and a duality method based on Bermúdez-Moreno algorithm for the morphodynamical component.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-010-9447-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Gravitation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Sand ; Sediment transport ; Sediments ; Shallow water ; Solids flow ; Theoretical ; Thickness</subject><ispartof>Journal of scientific computing, 2011-07, Vol.48 (1-3), p.258-273</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5154b42c0978d8de34cc5714d5188ff20692c902ff5f0820e16ee9633dcb390e3</citedby><cites>FETCH-LOGICAL-c348t-5154b42c0978d8de34cc5714d5188ff20692c902ff5f0820e16ee9633dcb390e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-010-9447-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918311911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Morales de Luna, T.</creatorcontrib><creatorcontrib>Castro Díaz, M. J.</creatorcontrib><creatorcontrib>Parés Madroñal, C.</creatorcontrib><title>A Duality Method for Sediment Transport Based on a Modified Meyer-Peter &amp; Müller Model</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid transport flux given by some empirical law. The solid transport discharge proposed by Meyer-Peter &amp; Müller is one of the most popular but it has the inconvenient of not including pressure forces. Due to this, this formula produces numerical simulations that are not realistic in zones where gravity effects are relevant, e.g. advancing front of the sand layer. Moreover, the thickness of the sediment layer is not taken into account and, as a consequence, mass conservation of sediment may fail. Fowler et al. proposed a generalization that takes into account gravity effects as well as the thickness of the sediment layer which is in better agreement with the physics of the problem. We propose to solve this system by using a path-conservative scheme for the hydrodynamical part and a duality method based on Bermúdez-Moreno algorithm for the morphodynamical component.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Gravitation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sand</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Shallow water</subject><subject>Solids flow</subject><subject>Theoretical</subject><subject>Thickness</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KxDAQx4MouH48gLeAoKfoTJo2ydFvBRcF9eAp1HailW6zJt3Dvo0P4klfzC4rCIKnmWF-_2H4MbaDcIAA-jAhWMwFIAirlBa4wkaY60zowuIqG4ExudBKq3W2kdIrAFhj5Yg9HvHTWdk2_ZyPqX8JNfch8juqmwl1Pb-PZZemIfb8uExU89B9vpef7-NQN74Z5jHNKYpb6inyPT7--mjboRvW1G6xNV-2ibZ_6iZ7OD-7P7kU1zcXVydH16LKlOlFjrl6UrICq01taspUVeUaVZ2jMd5LKKysLEjvcw9GAmFBZIssq6unzAJlm2x_eXcaw9uMUu8mTaqobcuOwiw5KwupC2NwIHf_kK9hFrvhOSctmgzR4oLCJVXFkFIk76axmZRx7hDcwrVbunaDa7dw7RYZucykge2eKf5e_j_0DchggXE</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Morales de Luna, T.</creator><creator>Castro Díaz, M. J.</creator><creator>Parés Madroñal, C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A Duality Method for Sediment Transport Based on a Modified Meyer-Peter &amp; Müller Model</title><author>Morales de Luna, T. ; Castro Díaz, M. J. ; Parés Madroñal, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5154b42c0978d8de34cc5714d5188ff20692c902ff5f0820e16ee9633dcb390e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Gravitation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sand</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Shallow water</topic><topic>Solids flow</topic><topic>Theoretical</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales de Luna, T.</creatorcontrib><creatorcontrib>Castro Díaz, M. J.</creatorcontrib><creatorcontrib>Parés Madroñal, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales de Luna, T.</au><au>Castro Díaz, M. J.</au><au>Parés Madroñal, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Duality Method for Sediment Transport Based on a Modified Meyer-Peter &amp; Müller Model</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>48</volume><issue>1-3</issue><spage>258</spage><epage>273</epage><pages>258-273</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid transport flux given by some empirical law. The solid transport discharge proposed by Meyer-Peter &amp; Müller is one of the most popular but it has the inconvenient of not including pressure forces. Due to this, this formula produces numerical simulations that are not realistic in zones where gravity effects are relevant, e.g. advancing front of the sand layer. Moreover, the thickness of the sediment layer is not taken into account and, as a consequence, mass conservation of sediment may fail. Fowler et al. proposed a generalization that takes into account gravity effects as well as the thickness of the sediment layer which is in better agreement with the physics of the problem. We propose to solve this system by using a path-conservative scheme for the hydrodynamical part and a duality method based on Bermúdez-Moreno algorithm for the morphodynamical component.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-010-9447-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2011-07, Vol.48 (1-3), p.258-273
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_926276881
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Computational Mathematics and Numerical Analysis
Computer simulation
Gravitation
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Sand
Sediment transport
Sediments
Shallow water
Solids flow
Theoretical
Thickness
title A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Duality%20Method%20for%20Sediment%20Transport%20Based%20on%C2%A0a%C2%A0Modified%20Meyer-Peter%20&%20M%C3%BCller%20Model&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Morales%20de%20Luna,%20T.&rft.date=2011-07-01&rft.volume=48&rft.issue=1-3&rft.spage=258&rft.epage=273&rft.pages=258-273&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-010-9447-1&rft_dat=%3Cproquest_cross%3E926276881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918311911&rft_id=info:pmid/&rfr_iscdi=true