Theoretical Study of Nascent Hydration in the Fe+(H2O) n System
The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functiona...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-03, Vol.116 (8), p.1906-1913 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1913 |
---|---|
container_issue | 8 |
container_start_page | 1906 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 116 |
creator | Garza-Galindo, Rodrigo Castro, Miguel Duncan, Michael A |
description | The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra. |
doi_str_mv | 10.1021/jp2117533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926153534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926153534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqUw8AeQFwQVCvgjTuIJoQooUkWHljmy47OaKh_Fdob8e4JaOqEb3hsevbp7ELqm5JESRp-2O0ZpKjg_QWMqGIkEo-J02EkmI5FwOUIX3m8JIZSz-ByNGON0mGSMntcbaB2EslAVXoXO9Li1-FP5ApqA571xKpRtg8sGhw3gN3i4n7PlFDd41fsA9SU6s6rycHXICfp6e13P5tFi-f4xe1lEikkRImZiEEamCbdE2DgTVvOMCZBFRnSWASiRgiY2NTSWUhpNM5EqpjXTseVJwSfobt-7c-13Bz7kdTncWFWqgbbzuWQJFVzweCCne7JwrfcObL5zZa1cn1OS_-rKj7oG9ubQ2ukazJH88zMAt3tAFT7ftp1rhif_KfoBEO1uPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926153534</pqid></control><display><type>article</type><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</creator><creatorcontrib>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</creatorcontrib><description>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp2117533</identifier><identifier>PMID: 22313136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Iron - chemistry ; Quantum Theory ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-03, Vol.116 (8), p.1906-1913</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</citedby><cites>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2117533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2117533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garza-Galindo, Rodrigo</creatorcontrib><creatorcontrib>Castro, Miguel</creatorcontrib><creatorcontrib>Duncan, Michael A</creatorcontrib><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</description><subject>Iron - chemistry</subject><subject>Quantum Theory</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PwzAQhi0EoqUw8AeQFwQVCvgjTuIJoQooUkWHljmy47OaKh_Fdob8e4JaOqEb3hsevbp7ELqm5JESRp-2O0ZpKjg_QWMqGIkEo-J02EkmI5FwOUIX3m8JIZSz-ByNGON0mGSMntcbaB2EslAVXoXO9Li1-FP5ApqA571xKpRtg8sGhw3gN3i4n7PlFDd41fsA9SU6s6rycHXICfp6e13P5tFi-f4xe1lEikkRImZiEEamCbdE2DgTVvOMCZBFRnSWASiRgiY2NTSWUhpNM5EqpjXTseVJwSfobt-7c-13Bz7kdTncWFWqgbbzuWQJFVzweCCne7JwrfcObL5zZa1cn1OS_-rKj7oG9ubQ2ukazJH88zMAt3tAFT7ftp1rhif_KfoBEO1uPw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Garza-Galindo, Rodrigo</creator><creator>Castro, Miguel</creator><creator>Duncan, Michael A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><author>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Iron - chemistry</topic><topic>Quantum Theory</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garza-Galindo, Rodrigo</creatorcontrib><creatorcontrib>Castro, Miguel</creatorcontrib><creatorcontrib>Duncan, Michael A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garza-Galindo, Rodrigo</au><au>Castro, Miguel</au><au>Duncan, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>116</volume><issue>8</issue><spage>1906</spage><epage>1913</epage><pages>1906-1913</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22313136</pmid><doi>10.1021/jp2117533</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-03, Vol.116 (8), p.1906-1913 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_926153534 |
source | MEDLINE; American Chemical Society Journals |
subjects | Iron - chemistry Quantum Theory Water - chemistry |
title | Theoretical Study of Nascent Hydration in the Fe+(H2O) n System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20Nascent%20Hydration%20in%20the%20Fe+(H2O)%20n%20System&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Garza-Galindo,%20Rodrigo&rft.date=2012-03-01&rft.volume=116&rft.issue=8&rft.spage=1906&rft.epage=1913&rft.pages=1906-1913&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp2117533&rft_dat=%3Cproquest_cross%3E926153534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926153534&rft_id=info:pmid/22313136&rfr_iscdi=true |