Theoretical Study of Nascent Hydration in the Fe+(H2O) n System

The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-03, Vol.116 (8), p.1906-1913
Hauptverfasser: Garza-Galindo, Rodrigo, Castro, Miguel, Duncan, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1913
container_issue 8
container_start_page 1906
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 116
creator Garza-Galindo, Rodrigo
Castro, Miguel
Duncan, Michael A
description The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.
doi_str_mv 10.1021/jp2117533
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926153534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926153534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqUw8AeQFwQVCvgjTuIJoQooUkWHljmy47OaKh_Fdob8e4JaOqEb3hsevbp7ELqm5JESRp-2O0ZpKjg_QWMqGIkEo-J02EkmI5FwOUIX3m8JIZSz-ByNGON0mGSMntcbaB2EslAVXoXO9Li1-FP5ApqA571xKpRtg8sGhw3gN3i4n7PlFDd41fsA9SU6s6rycHXICfp6e13P5tFi-f4xe1lEikkRImZiEEamCbdE2DgTVvOMCZBFRnSWASiRgiY2NTSWUhpNM5EqpjXTseVJwSfobt-7c-13Bz7kdTncWFWqgbbzuWQJFVzweCCne7JwrfcObL5zZa1cn1OS_-rKj7oG9ubQ2ukazJH88zMAt3tAFT7ftp1rhif_KfoBEO1uPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926153534</pqid></control><display><type>article</type><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</creator><creatorcontrib>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</creatorcontrib><description>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp2117533</identifier><identifier>PMID: 22313136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Iron - chemistry ; Quantum Theory ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2012-03, Vol.116 (8), p.1906-1913</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</citedby><cites>FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2117533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2117533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garza-Galindo, Rodrigo</creatorcontrib><creatorcontrib>Castro, Miguel</creatorcontrib><creatorcontrib>Duncan, Michael A</creatorcontrib><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</description><subject>Iron - chemistry</subject><subject>Quantum Theory</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PwzAQhi0EoqUw8AeQFwQVCvgjTuIJoQooUkWHljmy47OaKh_Fdob8e4JaOqEb3hsevbp7ELqm5JESRp-2O0ZpKjg_QWMqGIkEo-J02EkmI5FwOUIX3m8JIZSz-ByNGON0mGSMntcbaB2EslAVXoXO9Li1-FP5ApqA571xKpRtg8sGhw3gN3i4n7PlFDd41fsA9SU6s6rycHXICfp6e13P5tFi-f4xe1lEikkRImZiEEamCbdE2DgTVvOMCZBFRnSWASiRgiY2NTSWUhpNM5EqpjXTseVJwSfobt-7c-13Bz7kdTncWFWqgbbzuWQJFVzweCCne7JwrfcObL5zZa1cn1OS_-rKj7oG9ubQ2ukazJH88zMAt3tAFT7ftp1rhif_KfoBEO1uPw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Garza-Galindo, Rodrigo</creator><creator>Castro, Miguel</creator><creator>Duncan, Michael A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</title><author>Garza-Galindo, Rodrigo ; Castro, Miguel ; Duncan, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-2d4e5d9763f05f485fb3825e9c80b88eea57eb0f7d14999db1857a2bb2b4f36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Iron - chemistry</topic><topic>Quantum Theory</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garza-Galindo, Rodrigo</creatorcontrib><creatorcontrib>Castro, Miguel</creatorcontrib><creatorcontrib>Duncan, Michael A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garza-Galindo, Rodrigo</au><au>Castro, Miguel</au><au>Duncan, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of Nascent Hydration in the Fe+(H2O) n System</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>116</volume><issue>8</issue><spage>1906</spage><epage>1913</epage><pages>1906-1913</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The interactions of the iron monocation with water molecules and argon atoms in the gas phase were studied computationally to elucidate recent infrared vibrational spectroscopy on this system. These calculations employ first-principles all-electron methods performed with B3LYP/DZVP density functional theory. The ground state of Fe+(H2O) is found to be a quartet (M = 2S + 1 = 4, S is the total spin). Different binding sites for the addition of one or two argon atoms produce several low-lying states of different geometry and multiplicity in a relatively small energy range for Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar. In both species, quartet states are lowest in energy, and sextets and doublets lie at higher energies from the respective ground states. These results are consistent with the conclusion that the experimentally determined infrared photodissociation spectra (IRPD) of Fe+(H2O)–Ar2 and Fe+(H2O)2–Ar are complicated because of the presence of multiple isomeric structures. The estimated IR bands for the symmetric and asymmetric O–H stretches from different isomers provide new insight into the observed IRPD spectra.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22313136</pmid><doi>10.1021/jp2117533</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-03, Vol.116 (8), p.1906-1913
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_926153534
source MEDLINE; American Chemical Society Journals
subjects Iron - chemistry
Quantum Theory
Water - chemistry
title Theoretical Study of Nascent Hydration in the Fe+(H2O) n System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20Nascent%20Hydration%20in%20the%20Fe+(H2O)%20n%20System&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Garza-Galindo,%20Rodrigo&rft.date=2012-03-01&rft.volume=116&rft.issue=8&rft.spage=1906&rft.epage=1913&rft.pages=1906-1913&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp2117533&rft_dat=%3Cproquest_cross%3E926153534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926153534&rft_id=info:pmid/22313136&rfr_iscdi=true