Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications
In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visu...
Gespeichert in:
Veröffentlicht in: | Technological forecasting & social change 2011-02, Vol.78 (2), p.274-282 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 2 |
container_start_page | 274 |
container_title | Technological forecasting & social change |
container_volume | 78 |
creator | Shibata, Naoki Kajikawa, Yuya Takeda, Yoshiyuki Sakata, Ichiro Matsushima, Katsumori |
description | In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree
z and participation coefficient
P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells. |
doi_str_mv | 10.1016/j.techfore.2010.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_925711113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004016251000154X</els_id><sourcerecordid>862597535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</originalsourceid><addsrcrecordid>eNqFkU1vGyEQhldVK9VN-hda1Et7WWdYFlhurZJ-SZF6SHJGLDvYuGtwASfyvy-O20sPDRdgeN5Bmqdp3lBYUqDiYrMsaNcuJlx2UIsglwDiWbOgg2Qt56CeNwuAHloqOv6yeZXzBgAkG8SiebjCmi4-rAhuMa2Oh4QZTbJr4lIMJRMfammFAZMp_h7JFidvfUAyHkhZI7G-1IcYSMDyENNPYoKZD9lnEh3J1mMo3nlLdvtx9vYRzefNC2fmjK__7GfN3ZfPt5ff2usfX79ffrpurVCitL2Y-GSxo1yiE0wIKSwgm8QwOqRuUoig7Dj2KMzER0WdZKZemEUUorfsrHl_6rtL8dcec9Fbny3OswkY91mrjktaF3uSHOrwlOSMV_LDf0kqJbCuE5xW9N0_6CbuUx1P7ce5FLSnqkLiBNkUc07o9C75rUkHTUEfFeuN_qtYHxVrkLoqrsG3p6AzUZtV8lnf3VSAAVWdVMOx9ccTgXXG9x6TfvRhq8FUtesp-qc--Q25Tb65</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855761419</pqid></control><display><type>article</type><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</creator><creatorcontrib>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</creatorcontrib><description>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree
z and participation coefficient
P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</description><identifier>ISSN: 0040-1625</identifier><identifier>EISSN: 1873-5509</identifier><identifier>DOI: 10.1016/j.techfore.2010.07.006</identifier><identifier>CODEN: TFSCB3</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Centrality ; Citation analysis ; Cluster analysis ; Clusters ; Embryonic stem cells ; Emerging topic detection ; Induced pluripotent stem cells ; Knowledge ; Medical research ; Medicine ; Network Analysis ; Networks ; Parent Child Relations ; Participation ; Regeneration (physiology) ; Regenerative medicine ; Research front ; Scholarly publishing ; Scientific papers ; Stem cells ; Studies ; Topology ; Tracking (position)</subject><ispartof>Technological forecasting & social change, 2011-02, Vol.78 (2), p.274-282</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</citedby><cites>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004016251000154X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,33751,33752,65306</link.rule.ids></links><search><creatorcontrib>Shibata, Naoki</creatorcontrib><creatorcontrib>Kajikawa, Yuya</creatorcontrib><creatorcontrib>Takeda, Yoshiyuki</creatorcontrib><creatorcontrib>Sakata, Ichiro</creatorcontrib><creatorcontrib>Matsushima, Katsumori</creatorcontrib><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><title>Technological forecasting & social change</title><description>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree
z and participation coefficient
P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</description><subject>Centrality</subject><subject>Citation analysis</subject><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Embryonic stem cells</subject><subject>Emerging topic detection</subject><subject>Induced pluripotent stem cells</subject><subject>Knowledge</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Network Analysis</subject><subject>Networks</subject><subject>Parent Child Relations</subject><subject>Participation</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Research front</subject><subject>Scholarly publishing</subject><subject>Scientific papers</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Topology</subject><subject>Tracking (position)</subject><issn>0040-1625</issn><issn>1873-5509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkU1vGyEQhldVK9VN-hda1Et7WWdYFlhurZJ-SZF6SHJGLDvYuGtwASfyvy-O20sPDRdgeN5Bmqdp3lBYUqDiYrMsaNcuJlx2UIsglwDiWbOgg2Qt56CeNwuAHloqOv6yeZXzBgAkG8SiebjCmi4-rAhuMa2Oh4QZTbJr4lIMJRMfammFAZMp_h7JFidvfUAyHkhZI7G-1IcYSMDyENNPYoKZD9lnEh3J1mMo3nlLdvtx9vYRzefNC2fmjK__7GfN3ZfPt5ff2usfX79ffrpurVCitL2Y-GSxo1yiE0wIKSwgm8QwOqRuUoig7Dj2KMzER0WdZKZemEUUorfsrHl_6rtL8dcec9Fbny3OswkY91mrjktaF3uSHOrwlOSMV_LDf0kqJbCuE5xW9N0_6CbuUx1P7ce5FLSnqkLiBNkUc07o9C75rUkHTUEfFeuN_qtYHxVrkLoqrsG3p6AzUZtV8lnf3VSAAVWdVMOx9ccTgXXG9x6TfvRhq8FUtesp-qc--Q25Tb65</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Shibata, Naoki</creator><creator>Kajikawa, Yuya</creator><creator>Takeda, Yoshiyuki</creator><creator>Sakata, Ichiro</creator><creator>Matsushima, Katsumori</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>WZK</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20110201</creationdate><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><author>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Centrality</topic><topic>Citation analysis</topic><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Embryonic stem cells</topic><topic>Emerging topic detection</topic><topic>Induced pluripotent stem cells</topic><topic>Knowledge</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Network Analysis</topic><topic>Networks</topic><topic>Parent Child Relations</topic><topic>Participation</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Research front</topic><topic>Scholarly publishing</topic><topic>Scientific papers</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Topology</topic><topic>Tracking (position)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shibata, Naoki</creatorcontrib><creatorcontrib>Kajikawa, Yuya</creatorcontrib><creatorcontrib>Takeda, Yoshiyuki</creatorcontrib><creatorcontrib>Sakata, Ichiro</creatorcontrib><creatorcontrib>Matsushima, Katsumori</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Technological forecasting & social change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shibata, Naoki</au><au>Kajikawa, Yuya</au><au>Takeda, Yoshiyuki</au><au>Sakata, Ichiro</au><au>Matsushima, Katsumori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</atitle><jtitle>Technological forecasting & social change</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>78</volume><issue>2</issue><spage>274</spage><epage>282</epage><pages>274-282</pages><issn>0040-1625</issn><eissn>1873-5509</eissn><coden>TFSCB3</coden><abstract>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree
z and participation coefficient
P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.techfore.2010.07.006</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1625 |
ispartof | Technological forecasting & social change, 2011-02, Vol.78 (2), p.274-282 |
issn | 0040-1625 1873-5509 |
language | eng |
recordid | cdi_proquest_miscellaneous_925711113 |
source | Elsevier ScienceDirect Journals; Sociological Abstracts |
subjects | Centrality Citation analysis Cluster analysis Clusters Embryonic stem cells Emerging topic detection Induced pluripotent stem cells Knowledge Medical research Medicine Network Analysis Networks Parent Child Relations Participation Regeneration (physiology) Regenerative medicine Research front Scholarly publishing Scientific papers Stem cells Studies Topology Tracking (position) |
title | Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20emerging%20research%20fronts%20in%20regenerative%20medicine%20by%20the%20citation%20network%20analysis%20of%20scientific%20publications&rft.jtitle=Technological%20forecasting%20&%20social%20change&rft.au=Shibata,%20Naoki&rft.date=2011-02-01&rft.volume=78&rft.issue=2&rft.spage=274&rft.epage=282&rft.pages=274-282&rft.issn=0040-1625&rft.eissn=1873-5509&rft.coden=TFSCB3&rft_id=info:doi/10.1016/j.techfore.2010.07.006&rft_dat=%3Cproquest_cross%3E862597535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855761419&rft_id=info:pmid/&rft_els_id=S004016251000154X&rfr_iscdi=true |