Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications

In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technological forecasting & social change 2011-02, Vol.78 (2), p.274-282
Hauptverfasser: Shibata, Naoki, Kajikawa, Yuya, Takeda, Yoshiyuki, Sakata, Ichiro, Matsushima, Katsumori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 274
container_title Technological forecasting & social change
container_volume 78
creator Shibata, Naoki
Kajikawa, Yuya
Takeda, Yoshiyuki
Sakata, Ichiro
Matsushima, Katsumori
description In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree z and participation coefficient P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.
doi_str_mv 10.1016/j.techfore.2010.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_925711113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004016251000154X</els_id><sourcerecordid>862597535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</originalsourceid><addsrcrecordid>eNqFkU1vGyEQhldVK9VN-hda1Et7WWdYFlhurZJ-SZF6SHJGLDvYuGtwASfyvy-O20sPDRdgeN5Bmqdp3lBYUqDiYrMsaNcuJlx2UIsglwDiWbOgg2Qt56CeNwuAHloqOv6yeZXzBgAkG8SiebjCmi4-rAhuMa2Oh4QZTbJr4lIMJRMfammFAZMp_h7JFidvfUAyHkhZI7G-1IcYSMDyENNPYoKZD9lnEh3J1mMo3nlLdvtx9vYRzefNC2fmjK__7GfN3ZfPt5ff2usfX79ffrpurVCitL2Y-GSxo1yiE0wIKSwgm8QwOqRuUoig7Dj2KMzER0WdZKZemEUUorfsrHl_6rtL8dcec9Fbny3OswkY91mrjktaF3uSHOrwlOSMV_LDf0kqJbCuE5xW9N0_6CbuUx1P7ce5FLSnqkLiBNkUc07o9C75rUkHTUEfFeuN_qtYHxVrkLoqrsG3p6AzUZtV8lnf3VSAAVWdVMOx9ccTgXXG9x6TfvRhq8FUtesp-qc--Q25Tb65</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855761419</pqid></control><display><type>article</type><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</creator><creatorcontrib>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</creatorcontrib><description>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree z and participation coefficient P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</description><identifier>ISSN: 0040-1625</identifier><identifier>EISSN: 1873-5509</identifier><identifier>DOI: 10.1016/j.techfore.2010.07.006</identifier><identifier>CODEN: TFSCB3</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Centrality ; Citation analysis ; Cluster analysis ; Clusters ; Embryonic stem cells ; Emerging topic detection ; Induced pluripotent stem cells ; Knowledge ; Medical research ; Medicine ; Network Analysis ; Networks ; Parent Child Relations ; Participation ; Regeneration (physiology) ; Regenerative medicine ; Research front ; Scholarly publishing ; Scientific papers ; Stem cells ; Studies ; Topology ; Tracking (position)</subject><ispartof>Technological forecasting &amp; social change, 2011-02, Vol.78 (2), p.274-282</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</citedby><cites>FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004016251000154X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,33751,33752,65306</link.rule.ids></links><search><creatorcontrib>Shibata, Naoki</creatorcontrib><creatorcontrib>Kajikawa, Yuya</creatorcontrib><creatorcontrib>Takeda, Yoshiyuki</creatorcontrib><creatorcontrib>Sakata, Ichiro</creatorcontrib><creatorcontrib>Matsushima, Katsumori</creatorcontrib><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><title>Technological forecasting &amp; social change</title><description>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree z and participation coefficient P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</description><subject>Centrality</subject><subject>Citation analysis</subject><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Embryonic stem cells</subject><subject>Emerging topic detection</subject><subject>Induced pluripotent stem cells</subject><subject>Knowledge</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Network Analysis</subject><subject>Networks</subject><subject>Parent Child Relations</subject><subject>Participation</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Research front</subject><subject>Scholarly publishing</subject><subject>Scientific papers</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Topology</subject><subject>Tracking (position)</subject><issn>0040-1625</issn><issn>1873-5509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkU1vGyEQhldVK9VN-hda1Et7WWdYFlhurZJ-SZF6SHJGLDvYuGtwASfyvy-O20sPDRdgeN5Bmqdp3lBYUqDiYrMsaNcuJlx2UIsglwDiWbOgg2Qt56CeNwuAHloqOv6yeZXzBgAkG8SiebjCmi4-rAhuMa2Oh4QZTbJr4lIMJRMfammFAZMp_h7JFidvfUAyHkhZI7G-1IcYSMDyENNPYoKZD9lnEh3J1mMo3nlLdvtx9vYRzefNC2fmjK__7GfN3ZfPt5ff2usfX79ffrpurVCitL2Y-GSxo1yiE0wIKSwgm8QwOqRuUoig7Dj2KMzER0WdZKZemEUUorfsrHl_6rtL8dcec9Fbny3OswkY91mrjktaF3uSHOrwlOSMV_LDf0kqJbCuE5xW9N0_6CbuUx1P7ce5FLSnqkLiBNkUc07o9C75rUkHTUEfFeuN_qtYHxVrkLoqrsG3p6AzUZtV8lnf3VSAAVWdVMOx9ccTgXXG9x6TfvRhq8FUtesp-qc--Q25Tb65</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Shibata, Naoki</creator><creator>Kajikawa, Yuya</creator><creator>Takeda, Yoshiyuki</creator><creator>Sakata, Ichiro</creator><creator>Matsushima, Katsumori</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>WZK</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20110201</creationdate><title>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</title><author>Shibata, Naoki ; Kajikawa, Yuya ; Takeda, Yoshiyuki ; Sakata, Ichiro ; Matsushima, Katsumori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-46d5dce2157ef636676c0e3d68bfe1fd9ee09cbb4e6ad5b91f73a4e63cee664c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Centrality</topic><topic>Citation analysis</topic><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Embryonic stem cells</topic><topic>Emerging topic detection</topic><topic>Induced pluripotent stem cells</topic><topic>Knowledge</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Network Analysis</topic><topic>Networks</topic><topic>Parent Child Relations</topic><topic>Participation</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Research front</topic><topic>Scholarly publishing</topic><topic>Scientific papers</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Topology</topic><topic>Tracking (position)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shibata, Naoki</creatorcontrib><creatorcontrib>Kajikawa, Yuya</creatorcontrib><creatorcontrib>Takeda, Yoshiyuki</creatorcontrib><creatorcontrib>Sakata, Ichiro</creatorcontrib><creatorcontrib>Matsushima, Katsumori</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Technological forecasting &amp; social change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shibata, Naoki</au><au>Kajikawa, Yuya</au><au>Takeda, Yoshiyuki</au><au>Sakata, Ichiro</au><au>Matsushima, Katsumori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications</atitle><jtitle>Technological forecasting &amp; social change</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>78</volume><issue>2</issue><spage>274</spage><epage>282</epage><pages>274-282</pages><issn>0040-1625</issn><eissn>1873-5509</eissn><coden>TFSCB3</coden><abstract>In this paper, we detect emerging research fronts in a huge number of academic papers related to regenerative medicine, a field of radically innovative research. We divide citation networks into clusters using the topological clustering method, track the positions of papers in each cluster, and visualize citation networks with characteristic terms for each cluster. Analyzing the clustering results with the average published year and parent–child relationship of each cluster could be helpful in detecting recent trends. In addition, tracking topological measures, within-cluster degree z and participation coefficient P, enables us to determine whether there are emerging knowledge clusters. Our results show the success of our method in detecting emerging research fronts in regenerative medicine, and these results are confirmed as reasonable by experts. Finally, we predict the future core papers, with the potential of many citations, via the betweenness centralities in the citation network of the research into adult and somatic stem cells.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.techfore.2010.07.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1625
ispartof Technological forecasting & social change, 2011-02, Vol.78 (2), p.274-282
issn 0040-1625
1873-5509
language eng
recordid cdi_proquest_miscellaneous_925711113
source Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Centrality
Citation analysis
Cluster analysis
Clusters
Embryonic stem cells
Emerging topic detection
Induced pluripotent stem cells
Knowledge
Medical research
Medicine
Network Analysis
Networks
Parent Child Relations
Participation
Regeneration (physiology)
Regenerative medicine
Research front
Scholarly publishing
Scientific papers
Stem cells
Studies
Topology
Tracking (position)
title Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20emerging%20research%20fronts%20in%20regenerative%20medicine%20by%20the%20citation%20network%20analysis%20of%20scientific%20publications&rft.jtitle=Technological%20forecasting%20&%20social%20change&rft.au=Shibata,%20Naoki&rft.date=2011-02-01&rft.volume=78&rft.issue=2&rft.spage=274&rft.epage=282&rft.pages=274-282&rft.issn=0040-1625&rft.eissn=1873-5509&rft.coden=TFSCB3&rft_id=info:doi/10.1016/j.techfore.2010.07.006&rft_dat=%3Cproquest_cross%3E862597535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855761419&rft_id=info:pmid/&rft_els_id=S004016251000154X&rfr_iscdi=true