Quantifying cellular differentiation by physical phenotype using digital holographic microscopy
Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to mo...
Gespeichert in:
Veröffentlicht in: | Integrative biology (Cambridge) 2012-01, Vol.4 (3), p.280-284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 3 |
container_start_page | 280 |
container_title | Integrative biology (Cambridge) |
container_volume | 4 |
creator | Chalut, Kevin J Ekpenyong, Andrew E Clegg, Warren L Melhuish, Isabel C Guck, Jochen |
description | Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics. |
doi_str_mv | 10.1039/c2ib00129b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_924964860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924964860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMo7rp68QdIb4JQnSZt0xxl8QsWRNBzycd0N9I2NWkP_fe27K6e5mXmmeGdl5DrBO4TYOJBU6sAEirUCVkmPOOx4FCcHnUu0gW5COEbIE8B0nOyoJTmlCXZkpQfg2x7W4223UYa63qopY-MrSr0OA1kb10bqTHqdmOwWtaTwNb1Y4fREOYlY7e2n_o7V7utl93O6qix2rugXTdekrNK1gGvDnVFvp6fPtev8eb95W39uIk1y2gfU8aqlJoMRQVSCC5xsj7ZFSZRXBilVKG1yDJUlHOUwhQawHADVBVMI2crcru_23n3M2Doy8aG-R_ZohtCKWgq8rTIYSLv9uRsMXisys7bRvqxTKCc8yz_85zgm8PZQTVo_tBjgOwXQtBzdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924964860</pqid></control><display><type>article</type><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</creator><creatorcontrib>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</creatorcontrib><description>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c2ib00129b</identifier><identifier>PMID: 22262315</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Cell Differentiation ; Fourier Analysis ; HL-60 Cells ; Holography - methods ; Holography - statistics & numerical data ; Humans ; Microscopy - methods ; Microscopy - statistics & numerical data ; Monocytes - cytology ; Neutrophils - cytology ; Optical Phenomena ; Phenotype ; Systems Biology</subject><ispartof>Integrative biology (Cambridge), 2012-01, Vol.4 (3), p.280-284</ispartof><rights>This journal is © The Royal Society of Chemistry 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</citedby><cites>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22262315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalut, Kevin J</creatorcontrib><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Clegg, Warren L</creatorcontrib><creatorcontrib>Melhuish, Isabel C</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><title>Integrative biology (Cambridge)</title><addtitle>Integr Biol (Camb)</addtitle><description>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</description><subject>Algorithms</subject><subject>Cell Differentiation</subject><subject>Fourier Analysis</subject><subject>HL-60 Cells</subject><subject>Holography - methods</subject><subject>Holography - statistics & numerical data</subject><subject>Humans</subject><subject>Microscopy - methods</subject><subject>Microscopy - statistics & numerical data</subject><subject>Monocytes - cytology</subject><subject>Neutrophils - cytology</subject><subject>Optical Phenomena</subject><subject>Phenotype</subject><subject>Systems Biology</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMo7rp68QdIb4JQnSZt0xxl8QsWRNBzycd0N9I2NWkP_fe27K6e5mXmmeGdl5DrBO4TYOJBU6sAEirUCVkmPOOx4FCcHnUu0gW5COEbIE8B0nOyoJTmlCXZkpQfg2x7W4223UYa63qopY-MrSr0OA1kb10bqTHqdmOwWtaTwNb1Y4fREOYlY7e2n_o7V7utl93O6qix2rugXTdekrNK1gGvDnVFvp6fPtev8eb95W39uIk1y2gfU8aqlJoMRQVSCC5xsj7ZFSZRXBilVKG1yDJUlHOUwhQawHADVBVMI2crcru_23n3M2Doy8aG-R_ZohtCKWgq8rTIYSLv9uRsMXisys7bRvqxTKCc8yz_85zgm8PZQTVo_tBjgOwXQtBzdg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chalut, Kevin J</creator><creator>Ekpenyong, Andrew E</creator><creator>Clegg, Warren L</creator><creator>Melhuish, Isabel C</creator><creator>Guck, Jochen</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><author>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Cell Differentiation</topic><topic>Fourier Analysis</topic><topic>HL-60 Cells</topic><topic>Holography - methods</topic><topic>Holography - statistics & numerical data</topic><topic>Humans</topic><topic>Microscopy - methods</topic><topic>Microscopy - statistics & numerical data</topic><topic>Monocytes - cytology</topic><topic>Neutrophils - cytology</topic><topic>Optical Phenomena</topic><topic>Phenotype</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalut, Kevin J</creatorcontrib><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Clegg, Warren L</creatorcontrib><creatorcontrib>Melhuish, Isabel C</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative biology (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalut, Kevin J</au><au>Ekpenyong, Andrew E</au><au>Clegg, Warren L</au><au>Melhuish, Isabel C</au><au>Guck, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</atitle><jtitle>Integrative biology (Cambridge)</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>4</volume><issue>3</issue><spage>280</spage><epage>284</epage><pages>280-284</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</abstract><cop>England</cop><pmid>22262315</pmid><doi>10.1039/c2ib00129b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-9694 |
ispartof | Integrative biology (Cambridge), 2012-01, Vol.4 (3), p.280-284 |
issn | 1757-9694 1757-9708 |
language | eng |
recordid | cdi_proquest_miscellaneous_924964860 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Royal Society Of Chemistry Journals 2008- |
subjects | Algorithms Cell Differentiation Fourier Analysis HL-60 Cells Holography - methods Holography - statistics & numerical data Humans Microscopy - methods Microscopy - statistics & numerical data Monocytes - cytology Neutrophils - cytology Optical Phenomena Phenotype Systems Biology |
title | Quantifying cellular differentiation by physical phenotype using digital holographic microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20cellular%20differentiation%20by%20physical%20phenotype%20using%20digital%20holographic%20microscopy&rft.jtitle=Integrative%20biology%20(Cambridge)&rft.au=Chalut,%20Kevin%20J&rft.date=2012-01-01&rft.volume=4&rft.issue=3&rft.spage=280&rft.epage=284&rft.pages=280-284&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c2ib00129b&rft_dat=%3Cproquest_cross%3E924964860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924964860&rft_id=info:pmid/22262315&rfr_iscdi=true |