Quantifying cellular differentiation by physical phenotype using digital holographic microscopy

Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative biology (Cambridge) 2012-01, Vol.4 (3), p.280-284
Hauptverfasser: Chalut, Kevin J, Ekpenyong, Andrew E, Clegg, Warren L, Melhuish, Isabel C, Guck, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 3
container_start_page 280
container_title Integrative biology (Cambridge)
container_volume 4
creator Chalut, Kevin J
Ekpenyong, Andrew E
Clegg, Warren L
Melhuish, Isabel C
Guck, Jochen
description Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.
doi_str_mv 10.1039/c2ib00129b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_924964860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924964860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMo7rp68QdIb4JQnSZt0xxl8QsWRNBzycd0N9I2NWkP_fe27K6e5mXmmeGdl5DrBO4TYOJBU6sAEirUCVkmPOOx4FCcHnUu0gW5COEbIE8B0nOyoJTmlCXZkpQfg2x7W4223UYa63qopY-MrSr0OA1kb10bqTHqdmOwWtaTwNb1Y4fREOYlY7e2n_o7V7utl93O6qix2rugXTdekrNK1gGvDnVFvp6fPtev8eb95W39uIk1y2gfU8aqlJoMRQVSCC5xsj7ZFSZRXBilVKG1yDJUlHOUwhQawHADVBVMI2crcru_23n3M2Doy8aG-R_ZohtCKWgq8rTIYSLv9uRsMXisys7bRvqxTKCc8yz_85zgm8PZQTVo_tBjgOwXQtBzdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924964860</pqid></control><display><type>article</type><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</creator><creatorcontrib>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</creatorcontrib><description>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c2ib00129b</identifier><identifier>PMID: 22262315</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Cell Differentiation ; Fourier Analysis ; HL-60 Cells ; Holography - methods ; Holography - statistics &amp; numerical data ; Humans ; Microscopy - methods ; Microscopy - statistics &amp; numerical data ; Monocytes - cytology ; Neutrophils - cytology ; Optical Phenomena ; Phenotype ; Systems Biology</subject><ispartof>Integrative biology (Cambridge), 2012-01, Vol.4 (3), p.280-284</ispartof><rights>This journal is © The Royal Society of Chemistry 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</citedby><cites>FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22262315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalut, Kevin J</creatorcontrib><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Clegg, Warren L</creatorcontrib><creatorcontrib>Melhuish, Isabel C</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><title>Integrative biology (Cambridge)</title><addtitle>Integr Biol (Camb)</addtitle><description>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</description><subject>Algorithms</subject><subject>Cell Differentiation</subject><subject>Fourier Analysis</subject><subject>HL-60 Cells</subject><subject>Holography - methods</subject><subject>Holography - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Microscopy - methods</subject><subject>Microscopy - statistics &amp; numerical data</subject><subject>Monocytes - cytology</subject><subject>Neutrophils - cytology</subject><subject>Optical Phenomena</subject><subject>Phenotype</subject><subject>Systems Biology</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMo7rp68QdIb4JQnSZt0xxl8QsWRNBzycd0N9I2NWkP_fe27K6e5mXmmeGdl5DrBO4TYOJBU6sAEirUCVkmPOOx4FCcHnUu0gW5COEbIE8B0nOyoJTmlCXZkpQfg2x7W4223UYa63qopY-MrSr0OA1kb10bqTHqdmOwWtaTwNb1Y4fREOYlY7e2n_o7V7utl93O6qix2rugXTdekrNK1gGvDnVFvp6fPtev8eb95W39uIk1y2gfU8aqlJoMRQVSCC5xsj7ZFSZRXBilVKG1yDJUlHOUwhQawHADVBVMI2crcru_23n3M2Doy8aG-R_ZohtCKWgq8rTIYSLv9uRsMXisys7bRvqxTKCc8yz_85zgm8PZQTVo_tBjgOwXQtBzdg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chalut, Kevin J</creator><creator>Ekpenyong, Andrew E</creator><creator>Clegg, Warren L</creator><creator>Melhuish, Isabel C</creator><creator>Guck, Jochen</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</title><author>Chalut, Kevin J ; Ekpenyong, Andrew E ; Clegg, Warren L ; Melhuish, Isabel C ; Guck, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-233f42d5e9f0a997ae7570649d1b79dbbb8cc955eb277ea9d8c00d7d02b83ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Cell Differentiation</topic><topic>Fourier Analysis</topic><topic>HL-60 Cells</topic><topic>Holography - methods</topic><topic>Holography - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Microscopy - methods</topic><topic>Microscopy - statistics &amp; numerical data</topic><topic>Monocytes - cytology</topic><topic>Neutrophils - cytology</topic><topic>Optical Phenomena</topic><topic>Phenotype</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalut, Kevin J</creatorcontrib><creatorcontrib>Ekpenyong, Andrew E</creatorcontrib><creatorcontrib>Clegg, Warren L</creatorcontrib><creatorcontrib>Melhuish, Isabel C</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative biology (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalut, Kevin J</au><au>Ekpenyong, Andrew E</au><au>Clegg, Warren L</au><au>Melhuish, Isabel C</au><au>Guck, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying cellular differentiation by physical phenotype using digital holographic microscopy</atitle><jtitle>Integrative biology (Cambridge)</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>4</volume><issue>3</issue><spage>280</spage><epage>284</epage><pages>280-284</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>Although the biochemical changes that occur during cell differentiation are well-known, less known is that there are significant, cell-wide physical changes that also occur. Understanding and quantifying these changes can help to better understand the process of differentiation as well as ways to monitor it. Digital holographic microscopy (DHM) is a marker-free quantitative phase microscopy technique for measuring biological processes such as cellular differentiation, alleviating the need for introduction of foreign markers. We found significant changes in subcellular structure and refractive index of differentiating myeloid precursor cells within one day of differentiation induction, and significant differences depending on the type of lineage commitment. We augmented our results by showing significant changes in the softness of myeloid precursor cell differentiation within one day using optical stretching, a laser trap-based marker-free technique. DHM and optical stretching therefore provide consequential parameterization of cellular differentiation with sensitivity otherwise difficult to achieve. Therefore, we provide a way forward to quantify and understand cell differentiation with minimal perturbation using biophotonics.</abstract><cop>England</cop><pmid>22262315</pmid><doi>10.1039/c2ib00129b</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1757-9694
ispartof Integrative biology (Cambridge), 2012-01, Vol.4 (3), p.280-284
issn 1757-9694
1757-9708
language eng
recordid cdi_proquest_miscellaneous_924964860
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Royal Society Of Chemistry Journals 2008-
subjects Algorithms
Cell Differentiation
Fourier Analysis
HL-60 Cells
Holography - methods
Holography - statistics & numerical data
Humans
Microscopy - methods
Microscopy - statistics & numerical data
Monocytes - cytology
Neutrophils - cytology
Optical Phenomena
Phenotype
Systems Biology
title Quantifying cellular differentiation by physical phenotype using digital holographic microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20cellular%20differentiation%20by%20physical%20phenotype%20using%20digital%20holographic%20microscopy&rft.jtitle=Integrative%20biology%20(Cambridge)&rft.au=Chalut,%20Kevin%20J&rft.date=2012-01-01&rft.volume=4&rft.issue=3&rft.spage=280&rft.epage=284&rft.pages=280-284&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c2ib00129b&rft_dat=%3Cproquest_cross%3E924964860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924964860&rft_id=info:pmid/22262315&rfr_iscdi=true