Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters

Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiology 2012-03, Vol.59 (2), p.190-194
Hauptverfasser: Atkov, Oleg Yu., MD, PhD, Gorokhova, Svetlana G., MD, PhD, Sboev, Alexandr G., PhD, Generozov, Eduard V., PhD, Muraseyeva, Elena V., MD, PhD, Moroshkina, Svetlana Y, Cherniy, Nadezhda N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 2
container_start_page 190
container_title Journal of cardiology
container_volume 59
creator Atkov, Oleg Yu., MD, PhD
Gorokhova, Svetlana G., MD, PhD
Sboev, Alexandr G., PhD
Generozov, Eduard V., PhD
Muraseyeva, Elena V., MD, PhD
Moroshkina, Svetlana Y
Cherniy, Nadezhda N
description Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.
doi_str_mv 10.1016/j.jjcc.2011.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_924962078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0914508711002255</els_id><sourcerecordid>924962078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7uzqH_BB8uZTx5u0TTogggy6Cgs-qM8hk97OptsmNbddmX9v6uz64INw4UByzoH7XcZeCdgKEOptv-1757YShNjmAaifsI1otCoqXTZP2QZ2oipqaPQFuyTqARTsGvWcXUgpRVPKasPu9zHFYNOJ36JNM289oSXMao8hkid-OPH84TvvvB14wCX9kflXTHfEfXDD0vpw5EfMj97xKQ6nMabp1tNI3IaWu8EH73JqssmOOGOiF-xZZwfClw96xX58-vh9_7m4-Xr9Zf_hpnA16LmQuqpcJVSjLFhdda2rVSkOZStBqdJ1oBrsBKBs67wOCHvQqtOoKnClarQor9ibc--U4s8FaTajJ4fDYAPGhcxOVjslQTfZKc9OlyJRws5MyY8ZjBFgVtymNytus-I2eTLuHHr9UL8cRmz_Rh75ZsO7swHzkvcekyHnMThsfUI3mzb6__e__yf-yPIOT0h9XFLI-IwwJA2Yb-vB13sLASBlXZe_AVLep5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924962078</pqid></control><display><type>article</type><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</creator><creatorcontrib>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</creatorcontrib><description>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</description><identifier>ISSN: 0914-5087</identifier><identifier>EISSN: 1876-4738</identifier><identifier>DOI: 10.1016/j.jjcc.2011.11.005</identifier><identifier>PMID: 22218324</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial neural networks ; Cardiovascular ; Coronary Angiography ; Coronary Disease - diagnosis ; Coronary Disease - genetics ; Coronary heart disease ; Databases, Factual ; Female ; Humans ; Male ; Middle Aged ; Neural Networks (Computer) ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Risk Factors</subject><ispartof>Journal of cardiology, 2012-03, Vol.59 (2), p.190-194</ispartof><rights>Japanese College of Cardiology</rights><rights>2011 Japanese College of Cardiology</rights><rights>Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</citedby><cites>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0914508711002255$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22218324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atkov, Oleg Yu., MD, PhD</creatorcontrib><creatorcontrib>Gorokhova, Svetlana G., MD, PhD</creatorcontrib><creatorcontrib>Sboev, Alexandr G., PhD</creatorcontrib><creatorcontrib>Generozov, Eduard V., PhD</creatorcontrib><creatorcontrib>Muraseyeva, Elena V., MD, PhD</creatorcontrib><creatorcontrib>Moroshkina, Svetlana Y</creatorcontrib><creatorcontrib>Cherniy, Nadezhda N</creatorcontrib><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><title>Journal of cardiology</title><addtitle>J Cardiol</addtitle><description>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</description><subject>Artificial neural networks</subject><subject>Cardiovascular</subject><subject>Coronary Angiography</subject><subject>Coronary Disease - diagnosis</subject><subject>Coronary Disease - genetics</subject><subject>Coronary heart disease</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Polymorphism, Genetic</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Risk Factors</subject><issn>0914-5087</issn><issn>1876-4738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7uzqH_BB8uZTx5u0TTogggy6Cgs-qM8hk97OptsmNbddmX9v6uz64INw4UByzoH7XcZeCdgKEOptv-1757YShNjmAaifsI1otCoqXTZP2QZ2oipqaPQFuyTqARTsGvWcXUgpRVPKasPu9zHFYNOJ36JNM289oSXMao8hkid-OPH84TvvvB14wCX9kflXTHfEfXDD0vpw5EfMj97xKQ6nMabp1tNI3IaWu8EH73JqssmOOGOiF-xZZwfClw96xX58-vh9_7m4-Xr9Zf_hpnA16LmQuqpcJVSjLFhdda2rVSkOZStBqdJ1oBrsBKBs67wOCHvQqtOoKnClarQor9ibc--U4s8FaTajJ4fDYAPGhcxOVjslQTfZKc9OlyJRws5MyY8ZjBFgVtymNytus-I2eTLuHHr9UL8cRmz_Rh75ZsO7swHzkvcekyHnMThsfUI3mzb6__e__yf-yPIOT0h9XFLI-IwwJA2Yb-vB13sLASBlXZe_AVLep5I</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Atkov, Oleg Yu., MD, PhD</creator><creator>Gorokhova, Svetlana G., MD, PhD</creator><creator>Sboev, Alexandr G., PhD</creator><creator>Generozov, Eduard V., PhD</creator><creator>Muraseyeva, Elena V., MD, PhD</creator><creator>Moroshkina, Svetlana Y</creator><creator>Cherniy, Nadezhda N</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><author>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Cardiovascular</topic><topic>Coronary Angiography</topic><topic>Coronary Disease - diagnosis</topic><topic>Coronary Disease - genetics</topic><topic>Coronary heart disease</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Polymorphism, Genetic</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkov, Oleg Yu., MD, PhD</creatorcontrib><creatorcontrib>Gorokhova, Svetlana G., MD, PhD</creatorcontrib><creatorcontrib>Sboev, Alexandr G., PhD</creatorcontrib><creatorcontrib>Generozov, Eduard V., PhD</creatorcontrib><creatorcontrib>Muraseyeva, Elena V., MD, PhD</creatorcontrib><creatorcontrib>Moroshkina, Svetlana Y</creatorcontrib><creatorcontrib>Cherniy, Nadezhda N</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkov, Oleg Yu., MD, PhD</au><au>Gorokhova, Svetlana G., MD, PhD</au><au>Sboev, Alexandr G., PhD</au><au>Generozov, Eduard V., PhD</au><au>Muraseyeva, Elena V., MD, PhD</au><au>Moroshkina, Svetlana Y</au><au>Cherniy, Nadezhda N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</atitle><jtitle>Journal of cardiology</jtitle><addtitle>J Cardiol</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>59</volume><issue>2</issue><spage>190</spage><epage>194</epage><pages>190-194</pages><issn>0914-5087</issn><eissn>1876-4738</eissn><abstract>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22218324</pmid><doi>10.1016/j.jjcc.2011.11.005</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-5087
ispartof Journal of cardiology, 2012-03, Vol.59 (2), p.190-194
issn 0914-5087
1876-4738
language eng
recordid cdi_proquest_miscellaneous_924962078
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Cardiovascular
Coronary Angiography
Coronary Disease - diagnosis
Coronary Disease - genetics
Coronary heart disease
Databases, Factual
Female
Humans
Male
Middle Aged
Neural Networks (Computer)
Polymorphism, Genetic
Polymorphism, Single Nucleotide
Risk Factors
title Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coronary%20heart%20disease%20diagnosis%20by%20artificial%20neural%20networks%20including%20genetic%20polymorphisms%20and%20clinical%20parameters&rft.jtitle=Journal%20of%20cardiology&rft.au=Atkov,%20Oleg%20Yu.,%20MD,%20PhD&rft.date=2012-03-01&rft.volume=59&rft.issue=2&rft.spage=190&rft.epage=194&rft.pages=190-194&rft.issn=0914-5087&rft.eissn=1876-4738&rft_id=info:doi/10.1016/j.jjcc.2011.11.005&rft_dat=%3Cproquest_cross%3E924962078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924962078&rft_id=info:pmid/22218324&rft_els_id=S0914508711002255&rfr_iscdi=true