Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters
Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographi...
Gespeichert in:
Veröffentlicht in: | Journal of cardiology 2012-03, Vol.59 (2), p.190-194 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 2 |
container_start_page | 190 |
container_title | Journal of cardiology |
container_volume | 59 |
creator | Atkov, Oleg Yu., MD, PhD Gorokhova, Svetlana G., MD, PhD Sboev, Alexandr G., PhD Generozov, Eduard V., PhD Muraseyeva, Elena V., MD, PhD Moroshkina, Svetlana Y Cherniy, Nadezhda N |
description | Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors. |
doi_str_mv | 10.1016/j.jjcc.2011.11.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_924962078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0914508711002255</els_id><sourcerecordid>924962078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7uzqH_BB8uZTx5u0TTogggy6Cgs-qM8hk97OptsmNbddmX9v6uz64INw4UByzoH7XcZeCdgKEOptv-1757YShNjmAaifsI1otCoqXTZP2QZ2oipqaPQFuyTqARTsGvWcXUgpRVPKasPu9zHFYNOJ36JNM289oSXMao8hkid-OPH84TvvvB14wCX9kflXTHfEfXDD0vpw5EfMj97xKQ6nMabp1tNI3IaWu8EH73JqssmOOGOiF-xZZwfClw96xX58-vh9_7m4-Xr9Zf_hpnA16LmQuqpcJVSjLFhdda2rVSkOZStBqdJ1oBrsBKBs67wOCHvQqtOoKnClarQor9ibc--U4s8FaTajJ4fDYAPGhcxOVjslQTfZKc9OlyJRws5MyY8ZjBFgVtymNytus-I2eTLuHHr9UL8cRmz_Rh75ZsO7swHzkvcekyHnMThsfUI3mzb6__e__yf-yPIOT0h9XFLI-IwwJA2Yb-vB13sLASBlXZe_AVLep5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924962078</pqid></control><display><type>article</type><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</creator><creatorcontrib>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</creatorcontrib><description>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</description><identifier>ISSN: 0914-5087</identifier><identifier>EISSN: 1876-4738</identifier><identifier>DOI: 10.1016/j.jjcc.2011.11.005</identifier><identifier>PMID: 22218324</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial neural networks ; Cardiovascular ; Coronary Angiography ; Coronary Disease - diagnosis ; Coronary Disease - genetics ; Coronary heart disease ; Databases, Factual ; Female ; Humans ; Male ; Middle Aged ; Neural Networks (Computer) ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Risk Factors</subject><ispartof>Journal of cardiology, 2012-03, Vol.59 (2), p.190-194</ispartof><rights>Japanese College of Cardiology</rights><rights>2011 Japanese College of Cardiology</rights><rights>Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</citedby><cites>FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0914508711002255$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22218324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atkov, Oleg Yu., MD, PhD</creatorcontrib><creatorcontrib>Gorokhova, Svetlana G., MD, PhD</creatorcontrib><creatorcontrib>Sboev, Alexandr G., PhD</creatorcontrib><creatorcontrib>Generozov, Eduard V., PhD</creatorcontrib><creatorcontrib>Muraseyeva, Elena V., MD, PhD</creatorcontrib><creatorcontrib>Moroshkina, Svetlana Y</creatorcontrib><creatorcontrib>Cherniy, Nadezhda N</creatorcontrib><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><title>Journal of cardiology</title><addtitle>J Cardiol</addtitle><description>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</description><subject>Artificial neural networks</subject><subject>Cardiovascular</subject><subject>Coronary Angiography</subject><subject>Coronary Disease - diagnosis</subject><subject>Coronary Disease - genetics</subject><subject>Coronary heart disease</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks (Computer)</subject><subject>Polymorphism, Genetic</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Risk Factors</subject><issn>0914-5087</issn><issn>1876-4738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7uzqH_BB8uZTx5u0TTogggy6Cgs-qM8hk97OptsmNbddmX9v6uz64INw4UByzoH7XcZeCdgKEOptv-1757YShNjmAaifsI1otCoqXTZP2QZ2oipqaPQFuyTqARTsGvWcXUgpRVPKasPu9zHFYNOJ36JNM289oSXMao8hkid-OPH84TvvvB14wCX9kflXTHfEfXDD0vpw5EfMj97xKQ6nMabp1tNI3IaWu8EH73JqssmOOGOiF-xZZwfClw96xX58-vh9_7m4-Xr9Zf_hpnA16LmQuqpcJVSjLFhdda2rVSkOZStBqdJ1oBrsBKBs67wOCHvQqtOoKnClarQor9ibc--U4s8FaTajJ4fDYAPGhcxOVjslQTfZKc9OlyJRws5MyY8ZjBFgVtymNytus-I2eTLuHHr9UL8cRmz_Rh75ZsO7swHzkvcekyHnMThsfUI3mzb6__e__yf-yPIOT0h9XFLI-IwwJA2Yb-vB13sLASBlXZe_AVLep5I</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Atkov, Oleg Yu., MD, PhD</creator><creator>Gorokhova, Svetlana G., MD, PhD</creator><creator>Sboev, Alexandr G., PhD</creator><creator>Generozov, Eduard V., PhD</creator><creator>Muraseyeva, Elena V., MD, PhD</creator><creator>Moroshkina, Svetlana Y</creator><creator>Cherniy, Nadezhda N</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</title><author>Atkov, Oleg Yu., MD, PhD ; Gorokhova, Svetlana G., MD, PhD ; Sboev, Alexandr G., PhD ; Generozov, Eduard V., PhD ; Muraseyeva, Elena V., MD, PhD ; Moroshkina, Svetlana Y ; Cherniy, Nadezhda N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2744c41686a0a74fdc5631b3d20663cf068ef10e2d583201ab76f7e640c368713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Cardiovascular</topic><topic>Coronary Angiography</topic><topic>Coronary Disease - diagnosis</topic><topic>Coronary Disease - genetics</topic><topic>Coronary heart disease</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks (Computer)</topic><topic>Polymorphism, Genetic</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkov, Oleg Yu., MD, PhD</creatorcontrib><creatorcontrib>Gorokhova, Svetlana G., MD, PhD</creatorcontrib><creatorcontrib>Sboev, Alexandr G., PhD</creatorcontrib><creatorcontrib>Generozov, Eduard V., PhD</creatorcontrib><creatorcontrib>Muraseyeva, Elena V., MD, PhD</creatorcontrib><creatorcontrib>Moroshkina, Svetlana Y</creatorcontrib><creatorcontrib>Cherniy, Nadezhda N</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkov, Oleg Yu., MD, PhD</au><au>Gorokhova, Svetlana G., MD, PhD</au><au>Sboev, Alexandr G., PhD</au><au>Generozov, Eduard V., PhD</au><au>Muraseyeva, Elena V., MD, PhD</au><au>Moroshkina, Svetlana Y</au><au>Cherniy, Nadezhda N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters</atitle><jtitle>Journal of cardiology</jtitle><addtitle>J Cardiol</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>59</volume><issue>2</issue><spage>190</spage><epage>194</epage><pages>190-194</pages><issn>0914-5087</issn><eissn>1876-4738</eissn><abstract>Summary The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64–94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22218324</pmid><doi>10.1016/j.jjcc.2011.11.005</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-5087 |
ispartof | Journal of cardiology, 2012-03, Vol.59 (2), p.190-194 |
issn | 0914-5087 1876-4738 |
language | eng |
recordid | cdi_proquest_miscellaneous_924962078 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Cardiovascular Coronary Angiography Coronary Disease - diagnosis Coronary Disease - genetics Coronary heart disease Databases, Factual Female Humans Male Middle Aged Neural Networks (Computer) Polymorphism, Genetic Polymorphism, Single Nucleotide Risk Factors |
title | Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coronary%20heart%20disease%20diagnosis%20by%20artificial%20neural%20networks%20including%20genetic%20polymorphisms%20and%20clinical%20parameters&rft.jtitle=Journal%20of%20cardiology&rft.au=Atkov,%20Oleg%20Yu.,%20MD,%20PhD&rft.date=2012-03-01&rft.volume=59&rft.issue=2&rft.spage=190&rft.epage=194&rft.pages=190-194&rft.issn=0914-5087&rft.eissn=1876-4738&rft_id=info:doi/10.1016/j.jjcc.2011.11.005&rft_dat=%3Cproquest_cross%3E924962078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924962078&rft_id=info:pmid/22218324&rft_els_id=S0914508711002255&rfr_iscdi=true |