A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area

High‐resolution simulations from the Advanced Research Weather Research and Forecasting (ARW‐WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-06, Vol.116 (D12), p.n/a, Article D12105
Hauptverfasser: Chen, Fei, Miao, Shiguang, Tewari, Mukul, Bao, Jian-Wen, Kusaka, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D12
container_start_page
container_title Journal of Geophysical Research
container_volume 116
creator Chen, Fei
Miao, Shiguang
Tewari, Mukul
Bao, Jian-Wen
Kusaka, Hiroyuki
description High‐resolution simulations from the Advanced Research Weather Research and Forecasting (ARW‐WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in the Houston‐Galveston (HG) area on 30 August 2000. Surface and wind profiler observations are used to evaluate the performance of WRF‐UCM. The model captures the observed nocturnal urban‐heat‐island intensity, diurnal rotation of surface winds, and the timing and vertical extent of sea breeze and its reversal in the boundary layer remarkably well. Using hourly SST slightly improves the WRF simulation of offshore wind and temperature. Model sensitivity tests demonstrate a delicate balance between the strength of sea breeze and prevailing offshore weak flow in determining the duration of the afternoon‐evening stagnation in HG. When the morning offshore flow is weak (3–5 m s−1), variations (1°–3°C) in surface temperature caused by environmental conditions substantially modify the wind fields over HG. The existence of the city itself seems to favor stagnation. Extremely dry soils increase daytime surface temperature by about 2°C, produced more vigorous boundary layer and faster moving sea breeze, favoring stagnation during late afternoon. The simulation with dry soils produces a 3 h shorter duration stagnation in the afternoon and 4 h longer duration in the evening, which may lead to more severe nighttime air pollution. Hourly variations of SST in shallow water in the Galveston Bay substantially affect the low‐level wind speed in HG. Key Points Soil moisture, sea surface temperature, and city modify stagnation in Houston
doi_str_mv 10.1029/2010JD015533
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923206596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923206596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4065-e40af9b419882ad02707d8cda2c5008b62ff5e9af1be6386e1f670fbdce953023</originalsourceid><addsrcrecordid>eNp9kdFqFDEUhgdRcGl75wMEQbxx9CSZZCaXZVe3lqIgisWbkMmcrKmzmTbJULdv4RubdUsRL8xNyDnf__-HnKp6RuE1BabeMKBwvgIqBOePqgWjQtaMAXtcLYA2XQ2MtU-rk5SuoJxGyAboovp1SsK8xeitGUnK87AjkyM-ZIzGZj-FRHrMt4iBpDk6Y5G4KVofNsSEgSQ0pI-Id0isj3YezUGz7-Xv6CNB59DmRKZikM0m_AFKwL5NNhFNSSJn05xyKZvyPq6eODMmPLm_j6ov795-Xp7VFx_X75enF7VtQIoaGzBO9Q1VXcfMAKyFdujsYJgVAF0vmXMClXG0R8k7idTJFlw_WFSCA-NH1cuD73WcbmZMWW99sjiOJmAZRyvGWQlSspDP_yGvpjmGMpxW-1zBFC3QqwNk45RSRKevo9-auNMU9H5B-u8FFfzFvadJ5etdNMH69KBhDVdcNm3h-IG79SPu_uupz9efVrSFThRVfVD5lPHng8rEH1q2vBX664e1vlxyCt8uV5ry3264rwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902705291</pqid></control><display><type>article</type><title>A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Chen, Fei ; Miao, Shiguang ; Tewari, Mukul ; Bao, Jian-Wen ; Kusaka, Hiroyuki</creator><creatorcontrib>Chen, Fei ; Miao, Shiguang ; Tewari, Mukul ; Bao, Jian-Wen ; Kusaka, Hiroyuki</creatorcontrib><description>High‐resolution simulations from the Advanced Research Weather Research and Forecasting (ARW‐WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in the Houston‐Galveston (HG) area on 30 August 2000. Surface and wind profiler observations are used to evaluate the performance of WRF‐UCM. The model captures the observed nocturnal urban‐heat‐island intensity, diurnal rotation of surface winds, and the timing and vertical extent of sea breeze and its reversal in the boundary layer remarkably well. Using hourly SST slightly improves the WRF simulation of offshore wind and temperature. Model sensitivity tests demonstrate a delicate balance between the strength of sea breeze and prevailing offshore weak flow in determining the duration of the afternoon‐evening stagnation in HG. When the morning offshore flow is weak (3–5 m s−1), variations (1°–3°C) in surface temperature caused by environmental conditions substantially modify the wind fields over HG. The existence of the city itself seems to favor stagnation. Extremely dry soils increase daytime surface temperature by about 2°C, produced more vigorous boundary layer and faster moving sea breeze, favoring stagnation during late afternoon. The simulation with dry soils produces a 3 h shorter duration stagnation in the afternoon and 4 h longer duration in the evening, which may lead to more severe nighttime air pollution. Hourly variations of SST in shallow water in the Galveston Bay substantially affect the low‐level wind speed in HG. Key Points Soil moisture, sea surface temperature, and city modify stagnation in Houston</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD015533</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Air pollution ; air quality ; Atmospheric sciences ; Boundary layers ; Earth sciences ; Earth, ocean, space ; Environmental conditions ; Exact sciences and technology ; Geophysics ; Mesoclimatology ; Sea surface temperature ; Shallow water ; Soil moisture ; surface forcing ; urban heat island ; Wind speed ; wind stagnation</subject><ispartof>Journal of Geophysical Research, 2011-06, Vol.116 (D12), p.n/a, Article D12105</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4065-e40af9b419882ad02707d8cda2c5008b62ff5e9af1be6386e1f670fbdce953023</citedby><cites>FETCH-LOGICAL-c4065-e40af9b419882ad02707d8cda2c5008b62ff5e9af1be6386e1f670fbdce953023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD015533$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD015533$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24393647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Miao, Shiguang</creatorcontrib><creatorcontrib>Tewari, Mukul</creatorcontrib><creatorcontrib>Bao, Jian-Wen</creatorcontrib><creatorcontrib>Kusaka, Hiroyuki</creatorcontrib><title>A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>High‐resolution simulations from the Advanced Research Weather Research and Forecasting (ARW‐WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in the Houston‐Galveston (HG) area on 30 August 2000. Surface and wind profiler observations are used to evaluate the performance of WRF‐UCM. The model captures the observed nocturnal urban‐heat‐island intensity, diurnal rotation of surface winds, and the timing and vertical extent of sea breeze and its reversal in the boundary layer remarkably well. Using hourly SST slightly improves the WRF simulation of offshore wind and temperature. Model sensitivity tests demonstrate a delicate balance between the strength of sea breeze and prevailing offshore weak flow in determining the duration of the afternoon‐evening stagnation in HG. When the morning offshore flow is weak (3–5 m s−1), variations (1°–3°C) in surface temperature caused by environmental conditions substantially modify the wind fields over HG. The existence of the city itself seems to favor stagnation. Extremely dry soils increase daytime surface temperature by about 2°C, produced more vigorous boundary layer and faster moving sea breeze, favoring stagnation during late afternoon. The simulation with dry soils produces a 3 h shorter duration stagnation in the afternoon and 4 h longer duration in the evening, which may lead to more severe nighttime air pollution. Hourly variations of SST in shallow water in the Galveston Bay substantially affect the low‐level wind speed in HG. Key Points Soil moisture, sea surface temperature, and city modify stagnation in Houston</description><subject>Air pollution</subject><subject>air quality</subject><subject>Atmospheric sciences</subject><subject>Boundary layers</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental conditions</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Mesoclimatology</subject><subject>Sea surface temperature</subject><subject>Shallow water</subject><subject>Soil moisture</subject><subject>surface forcing</subject><subject>urban heat island</subject><subject>Wind speed</subject><subject>wind stagnation</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kdFqFDEUhgdRcGl75wMEQbxx9CSZZCaXZVe3lqIgisWbkMmcrKmzmTbJULdv4RubdUsRL8xNyDnf__-HnKp6RuE1BabeMKBwvgIqBOePqgWjQtaMAXtcLYA2XQ2MtU-rk5SuoJxGyAboovp1SsK8xeitGUnK87AjkyM-ZIzGZj-FRHrMt4iBpDk6Y5G4KVofNsSEgSQ0pI-Id0isj3YezUGz7-Xv6CNB59DmRKZikM0m_AFKwL5NNhFNSSJn05xyKZvyPq6eODMmPLm_j6ov795-Xp7VFx_X75enF7VtQIoaGzBO9Q1VXcfMAKyFdujsYJgVAF0vmXMClXG0R8k7idTJFlw_WFSCA-NH1cuD73WcbmZMWW99sjiOJmAZRyvGWQlSspDP_yGvpjmGMpxW-1zBFC3QqwNk45RSRKevo9-auNMU9H5B-u8FFfzFvadJ5etdNMH69KBhDVdcNm3h-IG79SPu_uupz9efVrSFThRVfVD5lPHng8rEH1q2vBX664e1vlxyCt8uV5ry3264rwI</recordid><startdate>20110627</startdate><enddate>20110627</enddate><creator>Chen, Fei</creator><creator>Miao, Shiguang</creator><creator>Tewari, Mukul</creator><creator>Bao, Jian-Wen</creator><creator>Kusaka, Hiroyuki</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20110627</creationdate><title>A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area</title><author>Chen, Fei ; Miao, Shiguang ; Tewari, Mukul ; Bao, Jian-Wen ; Kusaka, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4065-e40af9b419882ad02707d8cda2c5008b62ff5e9af1be6386e1f670fbdce953023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air pollution</topic><topic>air quality</topic><topic>Atmospheric sciences</topic><topic>Boundary layers</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental conditions</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Mesoclimatology</topic><topic>Sea surface temperature</topic><topic>Shallow water</topic><topic>Soil moisture</topic><topic>surface forcing</topic><topic>urban heat island</topic><topic>Wind speed</topic><topic>wind stagnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Miao, Shiguang</creatorcontrib><creatorcontrib>Tewari, Mukul</creatorcontrib><creatorcontrib>Bao, Jian-Wen</creatorcontrib><creatorcontrib>Kusaka, Hiroyuki</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fei</au><au>Miao, Shiguang</au><au>Tewari, Mukul</au><au>Bao, Jian-Wen</au><au>Kusaka, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-06-27</date><risdate>2011</risdate><volume>116</volume><issue>D12</issue><epage>n/a</epage><artnum>D12105</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>High‐resolution simulations from the Advanced Research Weather Research and Forecasting (ARW‐WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in the Houston‐Galveston (HG) area on 30 August 2000. Surface and wind profiler observations are used to evaluate the performance of WRF‐UCM. The model captures the observed nocturnal urban‐heat‐island intensity, diurnal rotation of surface winds, and the timing and vertical extent of sea breeze and its reversal in the boundary layer remarkably well. Using hourly SST slightly improves the WRF simulation of offshore wind and temperature. Model sensitivity tests demonstrate a delicate balance between the strength of sea breeze and prevailing offshore weak flow in determining the duration of the afternoon‐evening stagnation in HG. When the morning offshore flow is weak (3–5 m s−1), variations (1°–3°C) in surface temperature caused by environmental conditions substantially modify the wind fields over HG. The existence of the city itself seems to favor stagnation. Extremely dry soils increase daytime surface temperature by about 2°C, produced more vigorous boundary layer and faster moving sea breeze, favoring stagnation during late afternoon. The simulation with dry soils produces a 3 h shorter duration stagnation in the afternoon and 4 h longer duration in the evening, which may lead to more severe nighttime air pollution. Hourly variations of SST in shallow water in the Galveston Bay substantially affect the low‐level wind speed in HG. Key Points Soil moisture, sea surface temperature, and city modify stagnation in Houston</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD015533</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011-06, Vol.116 (D12), p.n/a, Article D12105
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_923206596
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Air pollution
air quality
Atmospheric sciences
Boundary layers
Earth sciences
Earth, ocean, space
Environmental conditions
Exact sciences and technology
Geophysics
Mesoclimatology
Sea surface temperature
Shallow water
Soil moisture
surface forcing
urban heat island
Wind speed
wind stagnation
title A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20interactions%20between%20surface%20forcing%20and%20sea%20breeze%20circulations%20and%20their%20effects%20on%20stagnation%20in%20the%20greater%20Houston%20area&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Chen,%20Fei&rft.date=2011-06-27&rft.volume=116&rft.issue=D12&rft.epage=n/a&rft.artnum=D12105&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD015533&rft_dat=%3Cproquest_cross%3E923206596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902705291&rft_id=info:pmid/&rfr_iscdi=true