Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates
Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2012-03, Vol.98, p.363-369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | |
container_start_page | 363 |
container_title | Solar energy materials and solar cells |
container_volume | 98 |
creator | Klein, Stefan Rohde, Martin Buschbaum, Susanne Severin, Daniel |
description | Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%.
► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells. |
doi_str_mv | 10.1016/j.solmat.2011.10.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923205678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024811005940</els_id><sourcerecordid>923205678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtBBILAl_wGEuiNNs2o8Zjy9IKIKAFCkHlgsXq9fTy3o1j8XtQSLfxjfwTfFqoxxzKqlU1VVdQryTsJYg26vDmudhxLxWIGWh1qDcC7GSnXW11q57KVbglK1Bme61eMN8AADVarMSm80-zcuv_XHJ1XzMcYz31FdYf49X__-FAlXGqaexKgmYqkDDwNU8VVwMmVJNOeyL4ed0V_Gy5ZwwE1-KVzscmN4-4oX48eXz5vprfXt38-36020ddNvlukNTKqotOLK9tsFK45TRJqCGPgTXokWjqLWywaZrGg3dlsJOggOL2mh9IT6c7x7T_Hshzn6MfKqIE80Le6e0gqa1XVGaszKkmTnRzh9THDH99RL8aUN_8OcN_WnDE1s2LLb3jwHIAYddwilEfvKqxrRKQlN0H886Kt_-iZQ8h0hToD4mCtn3c3w-6AFOAIma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923205678</pqid></control><display><type>article</type><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</creator><creatorcontrib>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</creatorcontrib><description>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%.
► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2011.10.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Applied sciences ; Deposition rates ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Microcrystalline silicon ; Natural energy ; PECVD ; Photoelectric conversion ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy ; Stabilized efficiencies ; Tandem cells</subject><ispartof>Solar energy materials and solar cells, 2012-03, Vol.98, p.363-369</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</citedby><cites>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024811005940$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25462105$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Rohde, Martin</creatorcontrib><creatorcontrib>Buschbaum, Susanne</creatorcontrib><creatorcontrib>Severin, Daniel</creatorcontrib><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><title>Solar energy materials and solar cells</title><description>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%.
► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</description><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>Deposition rates</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Microcrystalline silicon</subject><subject>Natural energy</subject><subject>PECVD</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Stabilized efficiencies</subject><subject>Tandem cells</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtBBILAl_wGEuiNNs2o8Zjy9IKIKAFCkHlgsXq9fTy3o1j8XtQSLfxjfwTfFqoxxzKqlU1VVdQryTsJYg26vDmudhxLxWIGWh1qDcC7GSnXW11q57KVbglK1Bme61eMN8AADVarMSm80-zcuv_XHJ1XzMcYz31FdYf49X__-FAlXGqaexKgmYqkDDwNU8VVwMmVJNOeyL4ed0V_Gy5ZwwE1-KVzscmN4-4oX48eXz5vprfXt38-36020ddNvlukNTKqotOLK9tsFK45TRJqCGPgTXokWjqLWywaZrGg3dlsJOggOL2mh9IT6c7x7T_Hshzn6MfKqIE80Le6e0gqa1XVGaszKkmTnRzh9THDH99RL8aUN_8OcN_WnDE1s2LLb3jwHIAYddwilEfvKqxrRKQlN0H886Kt_-iZQ8h0hToD4mCtn3c3w-6AFOAIma</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Klein, Stefan</creator><creator>Rohde, Martin</creator><creator>Buschbaum, Susanne</creator><creator>Severin, Daniel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120301</creationdate><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><author>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>Deposition rates</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Microcrystalline silicon</topic><topic>Natural energy</topic><topic>PECVD</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Stabilized efficiencies</topic><topic>Tandem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Rohde, Martin</creatorcontrib><creatorcontrib>Buschbaum, Susanne</creatorcontrib><creatorcontrib>Severin, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Stefan</au><au>Rohde, Martin</au><au>Buschbaum, Susanne</au><au>Severin, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>98</volume><spage>363</spage><epage>369</epage><pages>363-369</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%.
► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2011.10.029</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2012-03, Vol.98, p.363-369 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_923205678 |
source | Elsevier ScienceDirect Journals |
subjects | Amorphous silicon Applied sciences Deposition rates Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Energy Exact sciences and technology Microcrystalline silicon Natural energy PECVD Photoelectric conversion Photovoltaic conversion Solar cells. Photoelectrochemical cells Solar energy Stabilized efficiencies Tandem cells |
title | Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20optimized%20a-Si/%CE%BCc-Si%20tandem%20solar%20cells%20on%20sputter-etched%20ZnO%20substrates&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Klein,%20Stefan&rft.date=2012-03-01&rft.volume=98&rft.spage=363&rft.epage=369&rft.pages=363-369&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2011.10.029&rft_dat=%3Cproquest_cross%3E923205678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923205678&rft_id=info:pmid/&rft_els_id=S0927024811005940&rfr_iscdi=true |