Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates

Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2012-03, Vol.98, p.363-369
Hauptverfasser: Klein, Stefan, Rohde, Martin, Buschbaum, Susanne, Severin, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue
container_start_page 363
container_title Solar energy materials and solar cells
container_volume 98
creator Klein, Stefan
Rohde, Martin
Buschbaum, Susanne
Severin, Daniel
description Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%. ► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.
doi_str_mv 10.1016/j.solmat.2011.10.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923205678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024811005940</els_id><sourcerecordid>923205678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</originalsourceid><addsrcrecordid>eNp9UMtuFDEQtBBILAl_wGEuiNNs2o8Zjy9IKIKAFCkHlgsXq9fTy3o1j8XtQSLfxjfwTfFqoxxzKqlU1VVdQryTsJYg26vDmudhxLxWIGWh1qDcC7GSnXW11q57KVbglK1Bme61eMN8AADVarMSm80-zcuv_XHJ1XzMcYz31FdYf49X__-FAlXGqaexKgmYqkDDwNU8VVwMmVJNOeyL4ed0V_Gy5ZwwE1-KVzscmN4-4oX48eXz5vprfXt38-36020ddNvlukNTKqotOLK9tsFK45TRJqCGPgTXokWjqLWywaZrGg3dlsJOggOL2mh9IT6c7x7T_Hshzn6MfKqIE80Le6e0gqa1XVGaszKkmTnRzh9THDH99RL8aUN_8OcN_WnDE1s2LLb3jwHIAYddwilEfvKqxrRKQlN0H886Kt_-iZQ8h0hToD4mCtn3c3w-6AFOAIma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923205678</pqid></control><display><type>article</type><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</creator><creatorcontrib>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</creatorcontrib><description>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%. ► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2011.10.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Applied sciences ; Deposition rates ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Microcrystalline silicon ; Natural energy ; PECVD ; Photoelectric conversion ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy ; Stabilized efficiencies ; Tandem cells</subject><ispartof>Solar energy materials and solar cells, 2012-03, Vol.98, p.363-369</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</citedby><cites>FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024811005940$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25462105$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Rohde, Martin</creatorcontrib><creatorcontrib>Buschbaum, Susanne</creatorcontrib><creatorcontrib>Severin, Daniel</creatorcontrib><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><title>Solar energy materials and solar cells</title><description>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%. ► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</description><subject>Amorphous silicon</subject><subject>Applied sciences</subject><subject>Deposition rates</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Microcrystalline silicon</subject><subject>Natural energy</subject><subject>PECVD</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Stabilized efficiencies</subject><subject>Tandem cells</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UMtuFDEQtBBILAl_wGEuiNNs2o8Zjy9IKIKAFCkHlgsXq9fTy3o1j8XtQSLfxjfwTfFqoxxzKqlU1VVdQryTsJYg26vDmudhxLxWIGWh1qDcC7GSnXW11q57KVbglK1Bme61eMN8AADVarMSm80-zcuv_XHJ1XzMcYz31FdYf49X__-FAlXGqaexKgmYqkDDwNU8VVwMmVJNOeyL4ed0V_Gy5ZwwE1-KVzscmN4-4oX48eXz5vprfXt38-36020ddNvlukNTKqotOLK9tsFK45TRJqCGPgTXokWjqLWywaZrGg3dlsJOggOL2mh9IT6c7x7T_Hshzn6MfKqIE80Le6e0gqa1XVGaszKkmTnRzh9THDH99RL8aUN_8OcN_WnDE1s2LLb3jwHIAYddwilEfvKqxrRKQlN0H886Kt_-iZQ8h0hToD4mCtn3c3w-6AFOAIma</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Klein, Stefan</creator><creator>Rohde, Martin</creator><creator>Buschbaum, Susanne</creator><creator>Severin, Daniel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120301</creationdate><title>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</title><author>Klein, Stefan ; Rohde, Martin ; Buschbaum, Susanne ; Severin, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8a41872b09e7d37c71492434ca30dcc96a7a42e6715a5855308becf10907a3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amorphous silicon</topic><topic>Applied sciences</topic><topic>Deposition rates</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Microcrystalline silicon</topic><topic>Natural energy</topic><topic>PECVD</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Stabilized efficiencies</topic><topic>Tandem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>Rohde, Martin</creatorcontrib><creatorcontrib>Buschbaum, Susanne</creatorcontrib><creatorcontrib>Severin, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Stefan</au><au>Rohde, Martin</au><au>Buschbaum, Susanne</au><au>Severin, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>98</volume><spage>363</spage><epage>369</epage><pages>363-369</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Recently, Applied Materials has demonstrated the ability to manufacture large area a-Si/μc-Si thin film modules with total area efficiencies of 10% and above. Reducing the production costs is now the key objective for an economic success of this technology. Decreasing the absorber layer thickness or increasing the deposition rate can reduce the cost significantly because the PECVD deposition of the silicon layers is one of the main cost contributors. But this would also reduce the conversion efficiency of amorphous/microcrystalline tandem cells (a-Si/μc-Si TJ cells). Therefore, optimizing TJ cells for maximal productivity requires a careful balancing of layer thicknesses and deposition rates. In this paper we studied the impact of deposition rates and absorber layer thicknesses for top and bottom cells. The reduction of the bottom cell (BC) thickness from 2μm to less than 1μm showed only a small impact on the stabilized module efficiency while having a big impact on the productivity of a production line. The influence of the top cell (TC) deposition rate on the other hand results in a big decrease of the efficiency while having only a small impact on the line output. 10.2% stable mini-module efficiency could be achieved with 900nm BC thickness, reducing the deposition time by 50%. ► The impact of layer thickness on a-Si/μc-Si tandem cell efficiency was carefully investigated. ► Stable module efficiencies above 10% can be achieved with 0.9μm bottom cell thickness. ► Thin tandem cells made with low top cell deposition rate give the highest productivity. ► Sputter-etched ZnO is an excellent substrate for high efficiency tandem cells.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2011.10.029</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2012-03, Vol.98, p.363-369
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_923205678
source Elsevier ScienceDirect Journals
subjects Amorphous silicon
Applied sciences
Deposition rates
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Microcrystalline silicon
Natural energy
PECVD
Photoelectric conversion
Photovoltaic conversion
Solar cells. Photoelectrochemical cells
Solar energy
Stabilized efficiencies
Tandem cells
title Throughput optimized a-Si/μc-Si tandem solar cells on sputter-etched ZnO substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20optimized%20a-Si/%CE%BCc-Si%20tandem%20solar%20cells%20on%20sputter-etched%20ZnO%20substrates&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Klein,%20Stefan&rft.date=2012-03-01&rft.volume=98&rft.spage=363&rft.epage=369&rft.pages=363-369&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2011.10.029&rft_dat=%3Cproquest_cross%3E923205678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923205678&rft_id=info:pmid/&rft_els_id=S0927024811005940&rfr_iscdi=true