An integrated computational workflow for efficient and quantitative modeling of renin inhibitors

A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2012-01, Vol.20 (2), p.851-858
Hauptverfasser: Subramanian, Govindan, Rao, Shashidhar N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 2
container_start_page 851
container_title Bioorganic & medicinal chemistry
container_volume 20
creator Subramanian, Govindan
Rao, Shashidhar N.
description A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.
doi_str_mv 10.1016/j.bmc.2011.11.063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923202650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089611009990</els_id><sourcerecordid>923202650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotvCA3AB3zhlGTuJY4tTVQFFqsQBejaOPV68JPHWdlrx9ni1hSNII83lm0_2_xPyisGWARPv9ttxtlsOjG3rgGifkA3rRNe0rWJPyQaUkA1IJc7Iec57AOCdYs_JGeccoO36Dfl-udCwFNwlU9BRG-fDWkwJcTETfYjpp5_iA_UxUfQ-2IBLoWZx9G41SwlH8h7pHB1OYdnR6GnCJRyVP8IYSkz5BXnmzZTx5eO-ILcfP3y7um5uvnz6fHV509gOZGmEw1GBkH4Ao6TiOPajsJJb4E44PgzeMuYtdFLWD0o3oBfK8k56tIjI2gvy9uQ9pHi3Yi56DtniNJkF45q14i0HLnr4P8lEzwfRtpVkJ9KmmHNCrw8pzCb90gz0sQG917UBfWxA16kN1JvXj_Z1nNH9vfgTeQXenABvoja7FLK-_VoNPVQLQKcq8f5EYM3rPmDS-Ri8RRcS2qJdDP94wG8mgaD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916527633</pqid></control><display><type>article</type><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Subramanian, Govindan ; Rao, Shashidhar N.</creator><creatorcontrib>Subramanian, Govindan ; Rao, Shashidhar N.</creatorcontrib><description>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2011.11.063</identifier><identifier>PMID: 22200345</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D-QSAR ; binding capacity ; Binding Sites ; chemistry ; CoMFA ; Computer Simulation ; CoMSIA ; data collection ; Databases, Factual ; Humans ; prediction ; Protein Structure, Tertiary ; Quantitative Structure-Activity Relationship ; renin ; Renin - antagonists &amp; inhibitors ; Renin - metabolism ; Renin inhibitors ; Small Molecule Libraries - chemistry ; Software ; Topomer CoMFA</subject><ispartof>Bioorganic &amp; medicinal chemistry, 2012-01, Vol.20 (2), p.851-858</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</citedby><cites>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bmc.2011.11.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22200345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Govindan</creatorcontrib><creatorcontrib>Rao, Shashidhar N.</creatorcontrib><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><title>Bioorganic &amp; medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</description><subject>3D-QSAR</subject><subject>binding capacity</subject><subject>Binding Sites</subject><subject>chemistry</subject><subject>CoMFA</subject><subject>Computer Simulation</subject><subject>CoMSIA</subject><subject>data collection</subject><subject>Databases, Factual</subject><subject>Humans</subject><subject>prediction</subject><subject>Protein Structure, Tertiary</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>renin</subject><subject>Renin - antagonists &amp; inhibitors</subject><subject>Renin - metabolism</subject><subject>Renin inhibitors</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Software</subject><subject>Topomer CoMFA</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EotvCA3AB3zhlGTuJY4tTVQFFqsQBejaOPV68JPHWdlrx9ni1hSNII83lm0_2_xPyisGWARPv9ttxtlsOjG3rgGifkA3rRNe0rWJPyQaUkA1IJc7Iec57AOCdYs_JGeccoO36Dfl-udCwFNwlU9BRG-fDWkwJcTETfYjpp5_iA_UxUfQ-2IBLoWZx9G41SwlH8h7pHB1OYdnR6GnCJRyVP8IYSkz5BXnmzZTx5eO-ILcfP3y7um5uvnz6fHV509gOZGmEw1GBkH4Ao6TiOPajsJJb4E44PgzeMuYtdFLWD0o3oBfK8k56tIjI2gvy9uQ9pHi3Yi56DtniNJkF45q14i0HLnr4P8lEzwfRtpVkJ9KmmHNCrw8pzCb90gz0sQG917UBfWxA16kN1JvXj_Z1nNH9vfgTeQXenABvoja7FLK-_VoNPVQLQKcq8f5EYM3rPmDS-Ri8RRcS2qJdDP94wG8mgaD1</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Subramanian, Govindan</creator><creator>Rao, Shashidhar N.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120115</creationdate><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><author>Subramanian, Govindan ; Rao, Shashidhar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3D-QSAR</topic><topic>binding capacity</topic><topic>Binding Sites</topic><topic>chemistry</topic><topic>CoMFA</topic><topic>Computer Simulation</topic><topic>CoMSIA</topic><topic>data collection</topic><topic>Databases, Factual</topic><topic>Humans</topic><topic>prediction</topic><topic>Protein Structure, Tertiary</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>renin</topic><topic>Renin - antagonists &amp; inhibitors</topic><topic>Renin - metabolism</topic><topic>Renin inhibitors</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Software</topic><topic>Topomer CoMFA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Govindan</creatorcontrib><creatorcontrib>Rao, Shashidhar N.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioorganic &amp; medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Govindan</au><au>Rao, Shashidhar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</atitle><jtitle>Bioorganic &amp; medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>851</spage><epage>858</epage><pages>851-858</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22200345</pmid><doi>10.1016/j.bmc.2011.11.063</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0968-0896
ispartof Bioorganic & medicinal chemistry, 2012-01, Vol.20 (2), p.851-858
issn 0968-0896
1464-3391
language eng
recordid cdi_proquest_miscellaneous_923202650
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 3D-QSAR
binding capacity
Binding Sites
chemistry
CoMFA
Computer Simulation
CoMSIA
data collection
Databases, Factual
Humans
prediction
Protein Structure, Tertiary
Quantitative Structure-Activity Relationship
renin
Renin - antagonists & inhibitors
Renin - metabolism
Renin inhibitors
Small Molecule Libraries - chemistry
Software
Topomer CoMFA
title An integrated computational workflow for efficient and quantitative modeling of renin inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20computational%20workflow%20for%20efficient%20and%20quantitative%20modeling%20of%20renin%20inhibitors&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=Subramanian,%20Govindan&rft.date=2012-01-15&rft.volume=20&rft.issue=2&rft.spage=851&rft.epage=858&rft.pages=851-858&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2011.11.063&rft_dat=%3Cproquest_cross%3E923202650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916527633&rft_id=info:pmid/22200345&rft_els_id=S0968089611009990&rfr_iscdi=true