An integrated computational workflow for efficient and quantitative modeling of renin inhibitors
A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are c...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2012-01, Vol.20 (2), p.851-858 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 858 |
---|---|
container_issue | 2 |
container_start_page | 851 |
container_title | Bioorganic & medicinal chemistry |
container_volume | 20 |
creator | Subramanian, Govindan Rao, Shashidhar N. |
description | A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin. |
doi_str_mv | 10.1016/j.bmc.2011.11.063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923202650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089611009990</els_id><sourcerecordid>923202650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotvCA3AB3zhlGTuJY4tTVQFFqsQBejaOPV68JPHWdlrx9ni1hSNII83lm0_2_xPyisGWARPv9ttxtlsOjG3rgGifkA3rRNe0rWJPyQaUkA1IJc7Iec57AOCdYs_JGeccoO36Dfl-udCwFNwlU9BRG-fDWkwJcTETfYjpp5_iA_UxUfQ-2IBLoWZx9G41SwlH8h7pHB1OYdnR6GnCJRyVP8IYSkz5BXnmzZTx5eO-ILcfP3y7um5uvnz6fHV509gOZGmEw1GBkH4Ao6TiOPajsJJb4E44PgzeMuYtdFLWD0o3oBfK8k56tIjI2gvy9uQ9pHi3Yi56DtniNJkF45q14i0HLnr4P8lEzwfRtpVkJ9KmmHNCrw8pzCb90gz0sQG917UBfWxA16kN1JvXj_Z1nNH9vfgTeQXenABvoja7FLK-_VoNPVQLQKcq8f5EYM3rPmDS-Ri8RRcS2qJdDP94wG8mgaD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916527633</pqid></control><display><type>article</type><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Subramanian, Govindan ; Rao, Shashidhar N.</creator><creatorcontrib>Subramanian, Govindan ; Rao, Shashidhar N.</creatorcontrib><description>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2011.11.063</identifier><identifier>PMID: 22200345</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D-QSAR ; binding capacity ; Binding Sites ; chemistry ; CoMFA ; Computer Simulation ; CoMSIA ; data collection ; Databases, Factual ; Humans ; prediction ; Protein Structure, Tertiary ; Quantitative Structure-Activity Relationship ; renin ; Renin - antagonists & inhibitors ; Renin - metabolism ; Renin inhibitors ; Small Molecule Libraries - chemistry ; Software ; Topomer CoMFA</subject><ispartof>Bioorganic & medicinal chemistry, 2012-01, Vol.20 (2), p.851-858</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</citedby><cites>FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bmc.2011.11.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22200345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Govindan</creatorcontrib><creatorcontrib>Rao, Shashidhar N.</creatorcontrib><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><title>Bioorganic & medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</description><subject>3D-QSAR</subject><subject>binding capacity</subject><subject>Binding Sites</subject><subject>chemistry</subject><subject>CoMFA</subject><subject>Computer Simulation</subject><subject>CoMSIA</subject><subject>data collection</subject><subject>Databases, Factual</subject><subject>Humans</subject><subject>prediction</subject><subject>Protein Structure, Tertiary</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>renin</subject><subject>Renin - antagonists & inhibitors</subject><subject>Renin - metabolism</subject><subject>Renin inhibitors</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Software</subject><subject>Topomer CoMFA</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EotvCA3AB3zhlGTuJY4tTVQFFqsQBejaOPV68JPHWdlrx9ni1hSNII83lm0_2_xPyisGWARPv9ttxtlsOjG3rgGifkA3rRNe0rWJPyQaUkA1IJc7Iec57AOCdYs_JGeccoO36Dfl-udCwFNwlU9BRG-fDWkwJcTETfYjpp5_iA_UxUfQ-2IBLoWZx9G41SwlH8h7pHB1OYdnR6GnCJRyVP8IYSkz5BXnmzZTx5eO-ILcfP3y7um5uvnz6fHV509gOZGmEw1GBkH4Ao6TiOPajsJJb4E44PgzeMuYtdFLWD0o3oBfK8k56tIjI2gvy9uQ9pHi3Yi56DtniNJkF45q14i0HLnr4P8lEzwfRtpVkJ9KmmHNCrw8pzCb90gz0sQG917UBfWxA16kN1JvXj_Z1nNH9vfgTeQXenABvoja7FLK-_VoNPVQLQKcq8f5EYM3rPmDS-Ri8RRcS2qJdDP94wG8mgaD1</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Subramanian, Govindan</creator><creator>Rao, Shashidhar N.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120115</creationdate><title>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</title><author>Subramanian, Govindan ; Rao, Shashidhar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6deb9068f70a9892eb5b6c82c02d6d277fc11fc04884648d7ef69c248feceee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3D-QSAR</topic><topic>binding capacity</topic><topic>Binding Sites</topic><topic>chemistry</topic><topic>CoMFA</topic><topic>Computer Simulation</topic><topic>CoMSIA</topic><topic>data collection</topic><topic>Databases, Factual</topic><topic>Humans</topic><topic>prediction</topic><topic>Protein Structure, Tertiary</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>renin</topic><topic>Renin - antagonists & inhibitors</topic><topic>Renin - metabolism</topic><topic>Renin inhibitors</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Software</topic><topic>Topomer CoMFA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Govindan</creatorcontrib><creatorcontrib>Rao, Shashidhar N.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioorganic & medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Govindan</au><au>Rao, Shashidhar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated computational workflow for efficient and quantitative modeling of renin inhibitors</atitle><jtitle>Bioorganic & medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>851</spage><epage>858</epage><pages>851-858</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>A new integrated computational workflow that couples the strength of the molecular overlay methods to achieve rapid and automated alignments along with 3D-QSAR techniques like CoMFA® and CoMSIA for quantitative binding affinity prediction is presented. The results obtained from such techniques are compared with rule-based Topomer CoMFA® method, where possible. The developed 3D-QSAR models were prospectively used to predict the affinities of new compounds designed through R-group deconvolution starting from the core chemical scaffold and subsequent virtual combinatorial library enumeration. The general applicability of the seamless in silico modeling workflow is demonstrated using several datasets reported for small molecule inhibitors of renin.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22200345</pmid><doi>10.1016/j.bmc.2011.11.063</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-0896 |
ispartof | Bioorganic & medicinal chemistry, 2012-01, Vol.20 (2), p.851-858 |
issn | 0968-0896 1464-3391 |
language | eng |
recordid | cdi_proquest_miscellaneous_923202650 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | 3D-QSAR binding capacity Binding Sites chemistry CoMFA Computer Simulation CoMSIA data collection Databases, Factual Humans prediction Protein Structure, Tertiary Quantitative Structure-Activity Relationship renin Renin - antagonists & inhibitors Renin - metabolism Renin inhibitors Small Molecule Libraries - chemistry Software Topomer CoMFA |
title | An integrated computational workflow for efficient and quantitative modeling of renin inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20computational%20workflow%20for%20efficient%20and%20quantitative%20modeling%20of%20renin%20inhibitors&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=Subramanian,%20Govindan&rft.date=2012-01-15&rft.volume=20&rft.issue=2&rft.spage=851&rft.epage=858&rft.pages=851-858&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2011.11.063&rft_dat=%3Cproquest_cross%3E923202650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916527633&rft_id=info:pmid/22200345&rft_els_id=S0968089611009990&rfr_iscdi=true |