Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations

In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2012-02, Vol.420 (1), p.773-791
Hauptverfasser: Petit, V., Wade, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 1
container_start_page 773
container_title Monthly notices of the Royal Astronomical Society
container_volume 420
creator Petit, V.
Wade, G. A.
description In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate- and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. one or two) of observations. On the other hand, the method provides only weak constraints on the dipole geometry. The odds ratio, a parameter computed by the algorithm that quantifies the relative appropriateness of the magnetic dipole model versus the non-magnetic model, provides a more sensitive diagnostic of the presence of weak magnetic signals embedded in noise than traditional techniques. To illustrate the application of the technique to real data, we analyse seven ESPaDOnS and Narval observations of the early B-type magnetic star LP Ori. Insufficient information is available to determine the rotational period of the star and therefore the phase of the data; hence traditional modelling techniques fail to infer the dipole strength. In contrast, the Bayesian method allows a robust determination of the dipole polar strength,  G.
doi_str_mv 10.1111/j.1365-2966.2011.20091.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_923199869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2011.20091.x</oup_id><sourcerecordid>923199869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4181-85c46e93bf1a72b480146a5aad10dbca52861c6038018aaf5063074ac9590f223</originalsourceid><addsrcrecordid>eNp1UU1P3DAQtaoidQv8B6sXTtnO2Ik3vlSCVaGVFpBoOVuzWYf1KhsHOynk39dhUQ9UzMFj6X1Ibx5jHGGOab7u5ihVkQmt1FwAYnpA4_z5A5v9Az6yGYAssnKB-Il9jnEHALkUasbaX71tGgp8Tw-t7V3Fa2ebDe8o0N72NkReB7_nxC9otNFRy6mlZowucl_zrXvYZsFG3wy98y2Pna364DufLF3Sh2To19GGPzTh8YQd1dREe_q6j9n95fffyx_Z6vbq5_J8lVU5lpiVRZUrq-W6RlqIdV4C5ooKog3CZl1RIUqFlQKZgJKoLkBJWORU6UJDLYQ8ZmcH3y74x8HG3uxdrKakrfVDNFpI1LpUOjG_vGHu_BBSxETChYBSwET6diA9ucaOpkvZKIwGwUwdmJ2ZTm2mU5upA_PSgXk21zd3L99kIA8GfujekWf_yeVfApSNSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917208209</pqid></control><display><type>article</type><title>Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Oxford Journals Open Access Collection</source><creator>Petit, V. ; Wade, G. A.</creator><creatorcontrib>Petit, V. ; Wade, G. A.</creatorcontrib><description>In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate- and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. one or two) of observations. On the other hand, the method provides only weak constraints on the dipole geometry. The odds ratio, a parameter computed by the algorithm that quantifies the relative appropriateness of the magnetic dipole model versus the non-magnetic model, provides a more sensitive diagnostic of the presence of weak magnetic signals embedded in noise than traditional techniques. To illustrate the application of the technique to real data, we analyse seven ESPaDOnS and Narval observations of the early B-type magnetic star LP Ori. Insufficient information is available to determine the rotational period of the star and therefore the phase of the data; hence traditional modelling techniques fail to infer the dipole strength. In contrast, the Bayesian method allows a robust determination of the dipole polar strength,  G.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2011.20091.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Magnetic fields ; methods: statistical ; stars: early‐type ; techniques: polarimetric</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2012-02, Vol.420 (1), p.773-791</ispartof><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011</rights><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4181-85c46e93bf1a72b480146a5aad10dbca52861c6038018aaf5063074ac9590f223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2011.20091.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2011.20091.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Petit, V.</creatorcontrib><creatorcontrib>Wade, G. A.</creatorcontrib><title>Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate- and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. one or two) of observations. On the other hand, the method provides only weak constraints on the dipole geometry. The odds ratio, a parameter computed by the algorithm that quantifies the relative appropriateness of the magnetic dipole model versus the non-magnetic model, provides a more sensitive diagnostic of the presence of weak magnetic signals embedded in noise than traditional techniques. To illustrate the application of the technique to real data, we analyse seven ESPaDOnS and Narval observations of the early B-type magnetic star LP Ori. Insufficient information is available to determine the rotational period of the star and therefore the phase of the data; hence traditional modelling techniques fail to infer the dipole strength. In contrast, the Bayesian method allows a robust determination of the dipole polar strength,  G.</description><subject>Bayesian analysis</subject><subject>Magnetic fields</subject><subject>methods: statistical</subject><subject>stars: early‐type</subject><subject>techniques: polarimetric</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1UU1P3DAQtaoidQv8B6sXTtnO2Ik3vlSCVaGVFpBoOVuzWYf1KhsHOynk39dhUQ9UzMFj6X1Ibx5jHGGOab7u5ihVkQmt1FwAYnpA4_z5A5v9Az6yGYAssnKB-Il9jnEHALkUasbaX71tGgp8Tw-t7V3Fa2ebDe8o0N72NkReB7_nxC9otNFRy6mlZowucl_zrXvYZsFG3wy98y2Pna364DufLF3Sh2To19GGPzTh8YQd1dREe_q6j9n95fffyx_Z6vbq5_J8lVU5lpiVRZUrq-W6RlqIdV4C5ooKog3CZl1RIUqFlQKZgJKoLkBJWORU6UJDLYQ8ZmcH3y74x8HG3uxdrKakrfVDNFpI1LpUOjG_vGHu_BBSxETChYBSwET6diA9ucaOpkvZKIwGwUwdmJ2ZTm2mU5upA_PSgXk21zd3L99kIA8GfujekWf_yeVfApSNSQ</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Petit, V.</creator><creator>Wade, G. A.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>201202</creationdate><title>Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations</title><author>Petit, V. ; Wade, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4181-85c46e93bf1a72b480146a5aad10dbca52861c6038018aaf5063074ac9590f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian analysis</topic><topic>Magnetic fields</topic><topic>methods: statistical</topic><topic>stars: early‐type</topic><topic>techniques: polarimetric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petit, V.</creatorcontrib><creatorcontrib>Wade, G. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petit, V.</au><au>Wade, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2012-02</date><risdate>2012</risdate><volume>420</volume><issue>1</issue><spage>773</spage><epage>791</epage><pages>773-791</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate- and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. one or two) of observations. On the other hand, the method provides only weak constraints on the dipole geometry. The odds ratio, a parameter computed by the algorithm that quantifies the relative appropriateness of the magnetic dipole model versus the non-magnetic model, provides a more sensitive diagnostic of the presence of weak magnetic signals embedded in noise than traditional techniques. To illustrate the application of the technique to real data, we analyse seven ESPaDOnS and Narval observations of the early B-type magnetic star LP Ori. Insufficient information is available to determine the rotational period of the star and therefore the phase of the data; hence traditional modelling techniques fail to infer the dipole strength. In contrast, the Bayesian method allows a robust determination of the dipole polar strength,  G.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2011.20091.x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2012-02, Vol.420 (1), p.773-791
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_923199869
source Wiley Online Library - AutoHoldings Journals; Oxford Journals Open Access Collection
subjects Bayesian analysis
Magnetic fields
methods: statistical
stars: early‐type
techniques: polarimetric
title Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stellar%20magnetic%20field%20parameters%20from%20a%20Bayesian%20analysis%20of%20high-resolution%20spectropolarimetric%20observations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Petit,%20V.&rft.date=2012-02&rft.volume=420&rft.issue=1&rft.spage=773&rft.epage=791&rft.pages=773-791&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111/j.1365-2966.2011.20091.x&rft_dat=%3Cproquest_wiley%3E923199869%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917208209&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2011.20091.x&rfr_iscdi=true